National Science Foundation
WHERE DISCOVERIES BEGIN
Division of
SCIENCE RESOURCES STATISTICS

Characteristics of Doctoral Scientists and Engineers in the United States: 2006

Detailed Statistical Tables | NSF 09-317 | September 2009

Daniel J. Foley, Project Officer
Human Resources Statistics Program
(703) 292-7811

General Notes

This report presents data from the 2006 Survey of Doctorate Recipients (SDR). The SDR is a panel survey that collects longitudinal data, biennially, on demographic and general employment characteristics of individuals who have received a doctorate in a science, engineering, or health field from a U.S. academic institution. Sampled individuals are followed from shortly after they receive their doctorate through age 75 years. The SDR sample is augmented each cycle with new samples of the most recent cohorts of science and engineering doctorate recipients, identified by the Survey of Earned Doctorates, an annual census of research doctorates awarded in the United States.

The detailed statistical tables presented here provide information on the number and median salaries of doctoral scientists and engineers by field of doctorate and occupation; demographic characteristics, such as sex, race/ethnicity, citizenship, and age; and employment-related characteristics, such as sector of employment, employer location, and labor-force rates.[1] Appendix A provides technical information about the survey methodology, coverage, concepts, definitions, sampling errors, and standard error tables; appendix B provides crosswalks defining field of doctorate and occupation classifications used in survey sampling. The 2006 SDR mail questionnaire is provided in appendix C.

The National Science Foundation and the National Institutes of Health sponsored the 2006 survey, which was conducted by the National Opinion Research Center (NORC) at the University of Chicago. It is the 17th in a series of surveys initiated in 1973 in response to the needs of the federal government for demographic and employment information on scientists and engineers trained at the doctoral level. The goal of the 2006 SDR is to provide policymakers and researchers with high-quality data on the career patterns and achievements of the nation's doctoral scientists and engineers.

Other data on doctoral scientists and engineers are available at http://www.nsf.gov/statistics/ doctoratework/. For more information on survey data and methodology, please contact the project officer.

Footnotes

[1] Doctoral scientists and engineers are defined in this report as individuals less than 76 years of age who have received a doctorate in a science, engineering, or health field from a U.S. academic institution and who resided in the United States or one of its territories on 1 April 2006.

Data Tables

Table

Recipients of science, engineering, or health (SEH) doctorates: 2006
by field of doctorate and employment status
total
by sex
by race/ethnicity
by field of doctorate
selected employment characteristics
by sex
by race/ethnicity
by disability status

Employed recipients of SEH doctorates: 2006

by field of doctorate
by race/ethnicity and sex
by citizenship status
by age
by years since doctorate
by employment sector
by employment sector and sex
by employment sector and race/ethnicity
by primary or secondary work activity
by employer location
in universities and 4-year colleges, by field of doctorate
by sex and faculty rank
by sex, faculty rank, and years since doctorate
by race/ethnicity and faculty rank
by sex and tenure status
by sex, tenure status, and years since doctorate
by race/ethnicity and tenure status
by primary and secondary work activities
selected demographic characteristics
by broad field of doctorate
by citizenship status
selected demographic and employment-related characteristics
by employment sector
by race/ethnicity and sex
by primary or secondary work activity

SEH doctorate recipients by occupation

all recipients
by employment status
total
by sex
by race/ethnicity
by selected employment characteristics
by sex
by race/ethnicity
by disability status
employed as postdocs
employed recipients
by race/ethnicity and sex
non-Hispanic minorities, by race/ethnicity and sex
by citizenship status
by age
by years since doctorate
by employment sector
by employment sector and sex
by employment sector and race/ethnicity
by primary or secondary work activity
by employer location
selected demographic characteristics
by field of doctorate
by field of doctorate, in science occupations

Median annual salaries of full-time employed SEH doctorate recipients: 2006
by field of doctorate
by race/ethnicity and sex
by citizenship status
by age
by years since doctorate
by employment sector
by employment sector and sex
by employment sector and race/ethnicity
by primary or secondary work activity
by employer location
in universities and 4-year colleges, by field of doctorate
by sex and faculty rank
by sex, faculty rank, and years since doctorate
by race/ethnicity and faculty rank
by sex and tenure status

Academic employment positions in postsecondary institutions
by sex, tenure status, and years since doctorate
by race/ethnicity and tenure status
by occupation
by race/ethnicity and sex
by citizenship status
by age
by years since doctorate
by employment sector
by disability status
by employment sector and sex
by employment sector and race/ethnicity
by primary or secondary work activities
by employer location

Postdoctoral appointments, by field of SEH doctorate: 2006

total
postdocs ever held, by years since doctorate
primary reason for holding postdoc, by number of postdocs
postdoc status, by years since doctorate
total on postdocs, by selected demographic characteristics
extent to which current postdoc benefitted doctoral scientists and engineers
all positions, by field of doctorate

TABLE 1. Doctoral scientists and engineers, by field of doctorate and employment status: 2006
$\left.\begin{array}{lrrrrrrrr}\hline & & & & & & & & \text { Not employed, } \\ \text { not seeking }\end{array}\right)$
$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Full time and part time employment status is for principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job, but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 2. Doctoral scientists and engineers, by broad field of doctorate, employment status, and sex: 2006

Employment status and field	All	Male	Female
All fields	711,800	505,480	206,310
Employed full time	554,330	402,210	152,120
Employed part time	67,300	36,690	30,610
Unemployed	8,660	5,780	2,880
Retired	70,590	58,080	12,510
Not employed, not seeking work	10,920	2,720	8,200
Science	561,230	384,380	176,850
Employed full time	432,020	303,160	128,860
Employed part time	56,840	29,300	27,540
Unemployed	6,940	4,470	2,460
Retired	56,490	45,410	11,080
Not employed, not seeking work	8,940	2,040	6,900
Biological, agricultural, and environmental life sciences	177,420	119,330	58,090
Employed full time	143,910	98,200	45,710
Employed part time	12,070	6,450	5,630
Unemployed	2,250	1,240	1,010
Retired	16,000	12,760	3,240
Not employed, not seeking work	3,180	680	2,500
Computer and information sciences	13,990	11,480	2,510
Employed full time	12,860	10,780	2,070
Employed part time	720	460	260
Unemployed	150	120	S
Retired	190	90	90
Not employed, not seeking work	70	S	S
Mathematics and statistics	33,830	28,020	5,810
Employed full time	26,040	21,580	4,460
Employed part time	3,140	2,480	650
Unemployed	330	280	S
Retired	4,010	3,570	440
Not employed, not seeking work	330	110	220
Physical sciences	135,210	113,460	21,750
Employed full time	104,790	87,880	16,910
Employed part time	8,540	6,780	1,760
Unemployed	2,480	1,890	590
Retired	17,650	16,250	1,400
Not employed, not seeking work	1,740	660	1,080
Psychology	108,030	51,620	56,410
Employed full time	74,130	39,110	35,020
Employed part time	22,440	7,200	15,240
Unemployed	950	390	560
Retired	8,270	4,740	3,530
Not employed, not seeking work	2,240	180	2,060
Social sciences	92,750	60,470	32,270
Employed full time	70,290	45,610	24,680
Employed part time	9,930	5,940	3,990
Unemployed	770	550	220
Retired	10,370	7,990	2,380
Not employed, not seeking work	1,380	380	1,000
Engineering	121,520	109,590	11,920
Employed full time	99,410	89,620	9,780
Employed part time	7,110	6,440	670
Unemployed	1,480	1,270	210
Retired	12,120	11,640	480
Not employed, not seeking work	1,400	620	780

TABLE 2. Doctoral scientists and engineers, by broad field of doctorate, employment status, and sex: 2006

Employment status and field	All	Male	Female
Health	29,040	11,500	17,540
Employed full time	22,900	9,430	13,470
Employed part time	3,350	950	2,400
Unemployed	240	S	210
Retired	1,980	1,030	950
Not employed, not seeking work	580	60	510

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Full time and part time employment status is for principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job, but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 3. Doctoral scientists and engineers, by broad field of doctorate, employment status, and race/ethnicity: 2006

Employment status and field	American Indian/			Black	Hispanic	White	Other racel ethnicity ${ }^{a}$
	All		Asian				
All fields	711,800	4,700	114,220	20,310	19,760	551,620	1,190
Employed full time	554,330	3,640	100,370	16,700	16,100	416,610	920
Employed part time	67,300	490	5,460	2,170	2,090	57,000	90
Unemployed	8,660	S	1,330	270	240	6,740	S
Retired	70,590	480	5,280	890	910	62,970	70
Not employed, not seeking work	10,920	50	1,790	280	420	8,300	70
Science	561,230	4,080	71,450	16,290	16,160	452,210	1,040
Employed full time	432,020	3,050	61,970	13,210	13,080	339,900	810
Employed part time	56,840	490	3,970	1,790	1,890	48,610	90
Unemployed	6,940	S	910	220	160	5,570	S
Retired	56,490	450	3,450	830	720	50,980	70
Not employed, not seeking work	8,940	50	1,150	230	320	7,150	S
Biological, agricultural, and environmental life sciences	177,420	1,260	27,060	4,130	4,980	139,580	420
Employed full time	143,910	1,030	23,940	3,660	4,240	110,740	300
Employed part time	12,070	80	1,130	230	300	10,310	S
Unemployed	2,250	S	330	S	80	1,780	S
Retired	16,000	80	1,080	160	210	14,420	60
Not employed, not seeking work	3,180	S	580	60	150	2,330	S
Computer and information sciences	13,990	S	4,440	290	320	8,880	S
Employed full time	12,860	S	4,210	280	290	8,020	S
Employed part time	720	S	110	S	S	570	S
Unemployed	150	S	S	S	S	110	S
Retired	190	S	70	S	S	120	S
Not employed, not seeking work	70	S	S	S	S	50	S
Mathematics and statistics	33,830	120	6,490	630	950	25,640	S
Employed full time	26,040	60	5,480	510	820	19,160	S
Employed part time	3,140	S	620	80	60	2,350	S
Unemployed	330	S	S	S	S	290	S
Retired	4,010	S	320	S	60	3,570	S
Not employed, not seeking work	330	S	50	S	S	260	S
Physical sciences	135,210	710	22,750	2,050	2,960	106,530	210
Employed full time	104,790	600	19,510	1,680	2,490	80,310	200
Employed part time	8,540	S	1,110	230	230	6,960	S
Unemployed	2,480	S	400	60	S	1,990	S
Retired	17,650	110	1,490	70	140	15,840	S
Not employed, not seeking work	1,740	S	240	S	50	1,430	S
Psychology	108,030	960	3,280	4,580	3,930	95,080	210
Employed full time	74,130	590	2,630	3,580	2,710	64,420	190
Employed part time	22,440	230	400	650	970	20,180	S
Unemployed	950	S	50	80	S	780	S
Retired	8,270	130	60	210	130	7,750	S
Not employed, not seeking work	2,240	S	130	60	80	1,950	S
Social sciences	92,750	980	7,430	4,610	3,020	76,510	190
Employed full time	70,290	730	6,200	3,500	2,530	57,240	100
Employed part time	9,930	140	610	600	290	8,240	S
Unemployed	770	S	70	60	S	620	S
Retired	10,370	110	430	370	170	9,280	S
Not employed, not seeking work	1,380	S	130	90	S	1,120	S
Engineering	121,520	420	39,540	2,390	2,760	76,290	120
Employed full time	99,410	390	35,620	2,170	2,350	58,790	80
Employed part time	7,110	S	1,220	150	110	5,630	S
Unemployed	1,480	S	410	S	S	960	S
Retired	12,120	S	1,690	S	150	10,230	S

TABLE 3. Doctoral scientists and engineers, by broad field of doctorate, employment status, and race/ethnicity: 2006

Employment status and field	All	American Indian/				
Alaska Native	Asian	Black	Hispanic	Other race/ White	ethnicity	
Not employed, not seeking work	1,400	S	600	S	100	670
Health	29,040	200	3,230	1,630	840	23,120
Employed full time	22,900	200	2,770	1,320	660	17,920
Employed part time	3,350	S	270	220	100	2,750
Unemployed	240	S	S	S	S	210
Retired	1,980	S	140	S	S	
Not employed, not seeking work	580	S	S	50	S	1,770

$\mathrm{S}=$ suppressed for reliability or confidentiality.

${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Full time and part time employment status is for the principal job only, not for all jobs held in the labor force. For, example, an individual could work part time in his/her principal job, but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 4. Selected employment characteristics of doctoral scientists and engineers, by field of doctorate: 2006
(Rate per 100)

Field	Unemployment rate	Involuntarily out-of-field rate	Labor force participation rate
All fields	1.4	3.1	88.5
Science	1.4	3.1	88.3
Biological, agricultural, and environmental life sciences	1.4	2.6	89.2
Agricultural/food sciences	1.1	3.9	87.4
Biochemistry/biophysics	1.9	2.8	88.4
Cell/molecular biology	1.9	1.4	94.4
Environmental life sciences	1.8	2.3	86.4
Microbiology	2.4	2.1	88.0
Zoology	0.6	4.9	78.8
Other biological sciences	1.2	2.3	90.8
Computer and information sciences	1.1	1.6	98.2
Mathematics and statistics	1.1	4.0	87.2
Physical sciences	2.1	5.4	85.7
Astronomy/astrophysics	S	5.2	89.5
Chemistry, except biochemistry	2.4	3.9	84.5
Earth/atmospheric/ocean sciences	1.5	3.8	86.1
Physics	2.2	8.7	87.0
Psychology	1.0	1.3	90.3
Social sciences	1.0	3.1	87.3
Economics	1.1	1.2	86.9
Political sciences	0.8	2.9	86.2
Sociology	0.5	3.2	88.3
Other social sciences	1.2	4.8	87.9
Engineering	1.4	3.3	88.9
Aerospace/aeronautical/astronautical engineering	S	2.7	88.8
Chemical engineering	2.9	4.5	87.0
Civil engineering	0.5	2.6	89.4
Electrical/computer engineering	0.8	2.6	90.3
Materials/metallurgical engineering	1.0	3.1	88.2
Mechanical engineering	2.2	4.0	91.7
Other engineering	1.4	3.7	86.5
Healh	0.9	0.6	91.2

S = suppressed for reliability or confidentiality.
NOTES: Labor force is defined as those employed (E) plus those unemployed and seeking work (U). Population (P) is defined as all science, engineering, and health doctorate holders under age 76, residing in the United States during the week of 1 April 2006, who earned doctorates from U.S. institutions. Involuntarily-out-of field rate is the percentage of employed individuals who reported working part time exclusively because suitable full-time work was not available and/or reported working in an area not related to the first doctoral degree (in their principal job$)$ at least partially because suitable work in the field was not available. Unemployment rate $\left(\mathrm{R}_{\mathrm{U}}\right)=\mathrm{U} /(\mathrm{E}+\mathrm{U})$. Labor force participation rate $\left(R_{L F}\right)=(E+U) / P$.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 5. Doctoral scientists and engineers, by field of doctorate and sex: 2006

Field	Total	Male	Female	Total	Male	Female
	Number			Percent		
All fields	711,800	505,480	206,310	100.0	71.0	29.0
Science	561,230	384,380	176,850	100.0	68.5	31.5
Biological, agricultural, and environmental life sciences	177,420	119,330	58,090	100.0	67.3	32.7
Agricultural/food sciences	19,500	15,770	3,730	100.0	80.9	19.1
Biochemistry/biophysics	27,880	19,190	8,690	100.0	68.8	31.2
Cell/molecular biology	18,270	10,150	8,120	100.0	55.5	44.5
Environmental life sciences	7,290	5,760	1,530	100.0	79.0	21.0
Microbiology	12,790	8,210	4,580	100.0	64.2	35.8
Zoology	12,400	9,740	2,660	100.0	78.5	21.5
Other biological sciences	79,290	50,520	28,770	100.0	63.7	36.3
Computer and information sciences	13,990	11,480	2,510	100.0	82.1	17.9
Mathematics and statistics	33,830	28,020	5,810	100.0	82.8	17.2
Physical sciences	135,210	113,460	21,750	100.0	83.9	16.1
Astronomy/astrophysics	4,750	3,940	820	100.0	82.8	17.2
Chemistry, except biochemistry	69,670	55,870	13,810	100.0	80.2	19.8
Earth/atmospheric/ocean sciences	20,460	16,750	3,710	100.0	81.9	18.1
Physics	40,330	36,910	3,410	100.0	91.5	8.5
Psychology	108,030	51,620	56,410	100.0	47.8	52.2
Social sciences	92,750	60,470	32,270	100.0	65.2	34.8
Economics	25,340	20,190	5,150	100.0	79.7	20.3
Political sciences	21,070	15,270	5,800	100.0	72.5	27.5
Sociology	17,030	9,040	7,990	100.0	53.1	46.9
Other social sciences	29,310	15,970	13,340	100.0	54.5	45.5
Engineering	121,520	109,590	11,920	100.0	90.2	9.8
Aerospace/aeronautical/astronautical engineering	5,380	5,030	350	100.0	93.5	6.5
Chemical engineering	16,820	14,820	2,000	100.0	88.1	11.9
Civil engineering	10,720	9,780	930	100.0	91.3	8.7
Electrical/computer engineering	33,590	30,860	2,730	100.0	91.9	8.1
Materials/metallurgical engineering	12,590	10,820	1,780	100.0	85.9	14.1
Mechanical engineering	16,750	15,780	970	100.0	94.2	5.8
Other engineering	25,670	22,520	3,160	100.0	87.7	12.3
Health	29,040	11,500	17,540	100.0	39.6	60.4

NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{a}$
	Number						
All fields	711,800	4,700	114,220	20,310	19,760	551,620	1,190
Science	561,230	4,080	71,450	16,290	16,160	452,210	1,040
Biological, agricultural, and environmental life sciences	177,420	1,260	27,060	4,130	4,980	139,580	420
Agricultural/food sciences	19,500	140	2,570	530	660	15,590	S
Biochemistry/biophysics	27,880	190	5,490	610	650	20,920	S
Cell/molecular biology	18,270	S	4,360	410	460	12,980	S
Environmental life sciences	7,290	70	560	110	190	6,320	S
Microbiology	12,790	S	1,730	310	330	10,340	50
Zoology	12,400	80	600	230	290	11,180	S
Other biological sciences	79,290	710	11,760	1,930	2,400	62,250	240
Computer and information sciences	13,990	S	4,440	290	320	8,880	S
Mathematics and statistics	33,830	120	6,490	630	950	25,640	S
Physical sciences	135,210	710	22,750	2,050	2,960	106,530	210
Astronomy/astrophysics	4,750	50	560	S	80	4,000	S
Chemistry, except biochemistry	69,670	380	12,830	1,460	1,590	53,270	140
Earth/atmospheric/ocean sciences	20,460	110	2,050	130	460	17,670	S
Physics	40,330	170	7,310	420	830	31,590	S
Psychology	108,030	960	3,280	4,580	3,930	95,080	210
Social sciences	92,750	980	7,430	4,610	3,020	76,510	190
Economics	25,340	100	3,340	780	700	20,380	50
Political sciences	21,070	240	1,150	1,300	590	17,760	S
Sociology	17,030	130	820	1,180	590	14,280	S
Other social sciences	29,310	510	2,130	1,360	1,140	24,090	80
Engineering	121,520	420	39,540	2,390	2,760	76,290	120
Aerospace/aeronautical/astronautical engineering	5,380	S	1,210	100	150	3,920	S
Chemical engineering	16,820	90	5,230	330	280	10,870	S
Civil engineering	10,720	S	2,950	330	380	7,010	S
Electrical/computer engineering	33,590	160	12,520	580	770	19,520	S
Materials/metallurgical engineering	12,590	50	4,340	230	270	7,670	S
Mechanical engineering	16,750	S	6,100	240	360	10,000	S
Other engineering	25,670	S	7,180	570	550	17,300	S
Health	29,040	200	3,230	1,630	840	23,120	S
	Percent						
All fields	100.0	0.7	16.0	2.9	2.8	77.5	0.2
Science	100.0	0.7	12.7	2.9	2.9	80.6	0.2
Biological, agricultural, and environmental life sciences	100.0	0.7	15.3	2.3	2.8	78.7	0.2
Agricultural/food sciences	100.0	0.7	13.2	2.7	3.4	79.9	S
Biochemistry/biophysics	100.0	0.7	19.7	2.2	2.3	75.0	S
Cell/molecular biology	100.0	S	23.8	2.2	2.5	71.0	S
Environmental life sciences	100.0	1.0	7.7	1.6	2.6	86.7	S
Microbiology	100.0	S	13.5	2.5	2.6	80.9	0.4
Zoology	100.0	0.6	4.8	1.8	2.4	90.1	S
Other biological sciences	100.0	0.9	14.8	2.4	3.0	78.5	0.3
Computer and information sciences	100.0	S	31.8	2.1	2.3	63.5	S
Mathematics and statistics	100.0	0.4	19.2	1.9	2.8	75.8	S
Physical sciences	100.0	0.5	16.8	1.5	2.2	78.8	0.2
Astronomy/astrophysics	100.0	1.1	11.8	S	1.7	84.1	S
Chemistry, except biochemistry	100.0	0.6	18.4	2.1	2.3	76.5	0.2

TABLE 6. Doctoral scientists and engineers, by field of doctorate and race/ethnicity: 2006

Field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{a}$
Earth/atmospheric/ocean sciences	100.0	0.5	10.0	0.6	2.2	86.4	S
Physics	100.0	0.4	18.1	1.0	2.1	78.3	S
Psychology	100.0	0.9	3.0	4.2	3.6	88.0	0.2
Social sciences	100.0	1.1	8.0	5.0	3.3	82.5	0.2
Economics	100.0	0.4	13.2	3.1	2.8	80.4	0.2
Political sciences	100.0	1.1	5.4	6.2	2.8	84.3	S
Sociology	100.0	0.8	4.8	7.0	3.4	83.9	S
Other social sciences	100.0	1.7	7.3	4.6	3.9	82.2	0.3
Engineering	100.0	0.3	32.5	2.0	2.3	62.8	0.1
Aerospace/aeronautical/astronautical engineering	100.0	S	22.5	1.9	2.8	72.8	S
Chemical engineering	100.0	0.5	31.1	2.0	1.7	64.7	S
Civil engineering	100.0	S	27.6	3.1	3.5	65.4	S
Electrical/computer engineering	100.0	0.5	37.3	1.7	2.3	58.1	S
Materials/metallurgical engineering	100.0	0.4	34.5	1.8	2.2	60.9	S
Mechanical engineering	100.0	S	36.4	1.4	2.1	59.7	S
Other engineering	100.0	S	28.0	2.2	2.2	67.4	S
Health	100.0	0.7	11.1	5.6	2.9	79.6	S

S = suppressed for reliability or confidentiality.
${ }^{a}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 7. Doctoral scientists and engineers, by field of doctorate and disability status: 2006

Field	All	With disability	Without disability
	Number		
All fields	711,800	53,310	658,480
Science	561,230	43,560	517,670
Biological, agricultural, and environmental life sciences	177,420	12,910	164,520
Agricultural/food sciences	19,500	1,720	17,770
Biochemistry/biophysics	27,880	1,950	25,940
Cell/molecular biology	18,270	870	17,400
Environmental life sciences	7,290	630	6,660
Microbiology	12,790	710	12,080
Zoology	12,400	1,450	10,960
Other biological sciences	79,290	5,580	73,710
Computer and information sciences	13,990	650	13,330
Mathematics and statistics	33,830	3,240	30,590
Physical sciences	135,210	9,640	125,580
Astronomy/astrophysics	4,750	190	4,560
Chemistry, except biochemistry	69,670	4,690	64,980
Earth/atmospheric/ocean sciences	20,460	1,560	18,900
Physics	40,330	3,190	37,130
Psychology	108,030	7,840	100,200
Social sciences	92,750	9,290	83,460
Economics	25,340	2,540	22,800
Political sciences	21,070	2,040	19,030
Sociology	17,030	1,720	15,300
Other social sciences	29,310	2,990	26,320
Engineering	121,520	7,630	113,880
Aerospace/aeronautical/astronautical engineering	5,380	290	5,090
Chemical engineering	16,820	1,090	15,730
Civil engineering	10,720	690	10,020
Electrical/computer engineering	33,590	1,640	31,940
Materials/metallurgical engineering	12,590	770	11,820
Mechanical engineering	16,750	1,360	15,390
Other engineering	25,670	1,780	23,890
Health	29,040	2,110	26,930
	Percent		
All fields	100.0	7.5	92.5
Science	100.0	7.8	92.2
Biological, agricultural, and environmental life sciences	100.0	7.3	92.7
Agricultural/food sciences	100.0	8.8	91.2
Biochemistry/biophysics	100.0	7.0	93.0
Cell/molecular biology	100.0	4.7	95.3
Environmental life sciences	100.0	8.6	91.4
Microbiology	100.0	5.5	94.5
Zoology	100.0	11.7	88.3
Other biological sciences	100.0	7.0	93.0
Computer and information sciences	100.0	4.7	95.3
Mathematics and statistics	100.0	9.6	90.4
Physical sciences	100.0	7.1	92.9
Astronomy/astrophysics	100.0	4.1	95.9
Chemistry, except biochemistry	100.0	6.7	93.3
Earth/atmospheric/ocean sciences	100.0	7.6	92.4
Physics	100.0	7.9	92.1

TABLE 7. Doctoral scientists and engineers, by field of doctorate and disability status: 2006

Field	All	With disability	Without disability
Psychology			
Social sciences	100.0	7.3	92.7
Economics	100.0	10.0	90.0
Political sciences	100.0	10.0	90.0
Sociology	100.0	9.7	90.3
Other social sciences	100.0	10.1	89.9
Engineering	100.0	10.2	89.8
Aerospace/aeronautical/astronautical engineering	100.0	6.3	93.7
Chemical engineering	100.0	5.4	94.6
Civil engineering	100.0	6.5	93.5
Electrical/computer engineering	100.0	6.5	93.5
Materials/metallurgical engineering	100.0	4.9	95.1
Mechanical engineering	100.0	6.1	93.9
Other engineering	100.0	8.1	91.9
Health	100.0	6.9	93.1

NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. The SESTAT surveys ask the degree of difficulty-none, slight, moderate, severe, or unable to do-an individual has in seeing (with glasses), hearing (with hearing aid), walking without assistance, or lifting 10 pounds. Those respondents who answered "moderate," "severe," or "unable to do" for any activity were classified as having a disability.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Field	All employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
	Total	Male	Female																		
	Number																				
All fields	621,630	438,900	182,730	4,130	2,750	1,380	105,830	79,220	26,610	18,870	10,590	8,280	18,190	11,330	6,850	473,610	334,360	139,250	1,010	650	360
Science	488,860	332,460	156,400	3,530	2,340	1,190	65,950	44,590	21,360	15,010	8,040	6,960	14,970	8,980	5,990	388,510	267,940	120,570	890	570	330
Biological, agricultural, and environmental life sciences	155,990	104,650	51,340	1,110	820	290	25,070	14,950	10,120	3,890	2,220	1,670	4,540	2,800	1,740	121,050	83,680	37,370	320	180	140
Agricultural/food sciences	16,850	13,390	3,470	140	80	60	2,490	1,640	850	490	410	80	620	470	150	13,110	10,780	2,330	S	S	S
Biochemistry/biophysics	24,190	16,780	7,410	150	140	S	4,970	2,880	2,080	550	280	270	600	430	170	17,890	13,020	4,880	S	S	S
Cell/molecular biology	16,920	9,740	7,180	S	S	S	4,070	2,280	1,790	400	240	160	450	260	190	11,930	6,940	4,990	S	S	S
Environmental life sciences	6,190	4,750	1,440	S	S	S	520	280	240	110	80	S	180	130	S	5,290	4,180	1,110	S	S	S
Microbiology	10,990	6,920	4,070	S	S	S	1,580	910	660	300	130	160	320	180	140	8,720	5,670	3,050	50	S	S
Zoology	9,720	7,600	2,120	80	S	S	570	410	160	210	120	90	270	210	70	8,560	6,810	1,750	S	S	S
Other biological sciences	71,120	45,470	25,650	630	510	120	10,880	6,530	4,350	1,820	950	870	2,100	1,120	990	55,540	36,290	19,250	150	80	80
Computer and information sciences	13,580	11,240	2,330	S	S	S	4,320	3,590	730	290	190	100	320	270	50	8,600	7,150	1,450	S	S	S
Mathematics and statistics	29,170	24,060	5,110	80	80	S	6,100	4,750	1,350	590	410	180	890	730	160	21,510	18,090	3,420	S	S	S
Physical sciences	113,330	94,660	18,680	600	490	110	20,620	16,000	4,620	1,910	1,460	450	2,720	2,120	590	87,270	74,430	12,840	210	150	60
Astronomy/astrophysics	4,240	3,530	700	50	S	S	530	400	140	S	S	S	80	50	S	3,510	3,020	490	S	S	S
Chemistry, except biochemistry	57,450	45,850	11,600	300	230	70	11,490	8,420	3,070	1,350	990	360	1,460	1,080	380	42,700	35,040	7,660	140	80	60
Earth/atmospheric/ ocean sciences	17,340	13,950	3,390	110	100	S	1,910	1,470	440	120	100	S	420	340	80	14,750	11,910	2,840	S	S	S
Physics	34,310	31,320	2,990	140	140	S	6,690	5,720	970	390	340	60	760	650	100	26,310	24,450	1,860	S	S	S
Psychology	96,570	46,310	50,260	830	370	460	3,030	930	2,100	4,220	1,390	2,830	3,680	1,340	2,340	84,600	42,160	42,440	210	120	90
Social sciences	80,220	51,550	28,680	870	560	310	6,800	4,370	2,440	4,100	2,370	1,730	2,820	1,720	1,100	65,490	42,430	23,060	150	100	S
Economics	21,780	17,180	4,600	50	50	S	3,080	2,160	930	690	590	100	600	490	110	17,300	13,840	3,460	S	S	S
Political sciences	18,010	12,820	5,190	180	110	70	1,000	690	310	1,190	700	490	570	380	190	15,040	10,930	4,110	S	S	S
Sociology	14,960	7,790	7,170	130	70	50	770	410	350	1,040	570	470	550	310	250	12,470	6,420	6,040	S	S	S
Other social sciences	25,470	13,750	11,720	510	320	190	1,950	1,100	840	1,180	510	670	1,090	540	550	20,690	11,240	9,440	50	S	S
Engineering	106,520	96,060	10,460	390	360	S	36,840	33,030	3,810	2,320	1,950	370	2,460	2,090	370	64,420	58,550	5,880	80	80	S
Aerospace/aeronautical/ astronautical engineering	4,750	4,460	290	S	S	S	1,170	1,080	90	100	90	S	150	110	S	3,330	3,180	160	S	S	S
Chemical engineering	14,210	12,450	1,760	90	80	S	4,680	4,010	670	330	260	70	270	250	S	8,840	7,850	990	S	S	S
Civil engineering	9,530	8,720	810	S	S	S	2,730	2,510	220	330	300	S	360	340	S	6,060	5,520	530	S	S	S
Electrical/computer engineering	30,080	27,580	2,500	160	160	S	11,960	10,790	1,170	580	510	70	730	600	140	16,610	15,480	1,130	S	S	S
Materials/metallurgical engineering	11,000	9,560	1,430	S	S	S	3,980	3,510	470	210	170	S	190	160	S	6,600	5,700	900	S	S	S
Mechanical engineering	15,030	14,200	830	S	S	S	5,760	5,340	420	200	180	S	290	270	S	8,720	8,370	360	S	S	S

Field	All employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
	Total	Male	Female																		
Other engineering	21,910	19,080	2,830	S	S	S	6,560	5,790	780	570	420	140	470	370	100	14,260	12,450	1,820	S	S	S
Health	26,250	10,380	15,870	200	S	150	3,050	1,610	1,440	1,540	590	950	760	260	500	20,670	7,870	12,800	S	S	S
	Percent																				
All fields	100.0	70.6	29.4	100.0	66.7	33.3	100.0	74.9	25.1	100.0	56.1	43.9	100.0	62.3	37.7	100.0	70.6	29.4	100.0	64.1	35.9
Science	100.0	68.0	32.0	100.0	66.2	33.8	100.0	67.6	32.4	100.0	53.6	46.4	100.0	60.0	40.0	100.0	69.0	31.0	100.0	63.2	36.8
Biological, agricultural, and environmental life sciences	100.0	67.1	32.9	100.0	73.6	26.4	100.0	59.6	40.4	100.0	57.0	43.0	100.0	61.6	38.4	100.0	69.1	30.9	100.0	56.0	44.0
Agricultural/food sciences	100.0	79.4	20.6	100.0	56.1	43.9	100.0	66.0	34.0	100.0	82.8	17.2	100.0	76.3	23.7	100.0	82.3	17.7	100.0	S	S
Biochemistry/biophysics	100.0	69.4	30.6	100.0	92.7	S	100.0	58.0	42.0	100.0	50.9	49.1	100.0	72.1	27.9	100.0	72.7	27.3	100.0	S	S
Cell/molecular biology	100.0	57.5	42.5	100.0	S	S	100.0	56.1	43.9	100.0	58.9	41.1	100.0	58.4	41.6	100.0	58.2	41.8	100.0	S	S
Environmental life sciences	100.0	76.8	23.2	100.0	S	S	100.0	54.4	45.6	100.0	72.8	S	100.0	73.1	S	100.0	79.0	21.0	100.0	S	S
Microbiology	100.0	63.0	37.0	100.0	S	S	100.0	57.9	42.1	100.0	45.2	54.8	100.0	55.7	44.3	100.0	65.0	35.0	100.0	S	S
Zoology	100.0	78.2	21.8	100.0	S	S	100.0	72.6	27.4	100.0	58.2	41.8	100.0	76.1	23.9	100.0	79.5	20.5	100.0	S	S
Other biological sciences	100.0	63.9	36.1	100.0	81.3	18.7	100.0	60.0	40.0	100.0	52.3	47.7	100.0	53.1	46.9	100.0	65.3	34.7	100.0	50.1	49.9
Computer and information sciences	100.0	82.8	17.2	100.0	S	S	100.0	83.2	16.8	100.0	67.0	33.0	100.0	84.4	15.6	100.0	83.2	16.8	100.0	S	S
Mathematics and statistics	100.0	82.5	17.5	100.0	93.5	S	100.0	77.9	22.1	100.0	70.0	30.0	100.0	82.3	17.7	100.0	84.1	15.9	100.0	S	S
Physical sciences	100.0	83.5	16.5	100.0	81.1	18.9	100.0	77.6	22.4	100.0	76.2	23.8	100.0	78.2	21.8	100.0	85.3	14.7	100.0	72.4	27.6
Astronomy/astrophysics	100.0	83.4	16.6	100.0	S	S	100.0	74.1	25.9	100.0	S	S	100.0	63.6	S	100.0	86.1	13.9	100.0	S	S
Chemistry, except biochemistry	100.0	79.8	20.2	100.0	76.3	23.7	100.0	73.3	26.7	100.0	73.0	27.0	100.0	74.0	26.0	100.0	82.1	17.9	100.0	59.6	40.4
Earth/atmospheric/ ocean sciences	100.0	80.5	19.5	100.0	89.7	S	100.0	77.1	22.9	100.0	85.1	S	100.0	80.4	19.6	100.0	80.8	19.2	100.0	S	S
Physics	100.0	91.3	8.7	100.0	100.0	S	100.0	85.5	14.5	100.0	85.6	14.4	100.0	86.4	13.6	100.0	92.9	7.1	100.0	S	S
Psychology	100.0	48.0	52.0	100.0	44.9	55.1	100.0	30.6	69.4	100.0	33.0	67.0	100.0	36.3	63.7	100.0	49.8	50.2	100.0	56.6	43.4
Social sciences	100.0	64.3	35.7	100.0	64.1	35.9	100.0	64.2	35.8	100.0	57.8	42.2	100.0	61.0	39.0	100.0	64.8	35.2	100.0	72.1	S
Economics	100.0	78.9	21.1	100.0	100.0	S	100.0	70.0	30.0	100.0	85.0	15.0	100.0	81.9	18.1	100.0	80.0	20.0	100.0	S	S
Political sciences	100.0	71.2	28.8	100.0	60.9	39.1	100.0	69.0	31.0	100.0	58.7	41.3	100.0	66.8	33.2	100.0	72.7	27.3	100.0	S	S
Sociology	100.0	52.1	47.9	100.0	58.8	41.2	100.0	53.8	46.2	100.0	55.1	44.9	100.0	55.5	44.5	100.0	51.5	48.5	100.0	S	S
Other social sciences	100.0	54.0	46.0	100.0	62.8	37.2	100.0	56.6	43.4	100.0	43.3	56.7	100.0	49.3	50.7	100.0	54.4	45.6	100.0	S	s
Engineering	100.0	90.2	9.8	100.0	93.0	S	100.0	89.7	10.3	100.0	84.0	16.0	100.0	85.1	14.9	100.0	90.9	9.1	100.0	100.0	S
Aerospace/aeronautical/ astronautical engineering	100.0	93.9	6.1	100.0	S	S	100.0	92.1	7.9	100.0	93.3	S	100.0	74.8	S	100.0	95.3	4.7	100.0	S	S
Chemical engineering	100.0	87.6	12.4	100.0	87.5	S	100.0	85.7	14.3	100.0	80.0	20.0	100.0	91.1	S	100.0	88.8	11.2	100.0	S	S
Civil engineering	100.0	91.4	8.6	100.0	S	S	100.0	91.9	8.1	100.0	91.2	S	100.0	93.4	S	100.0	91.2	8.8	100.0	S	S
Electrical/computer engineering	100.0	91.7	8.3	100.0	100.0	S	100.0	90.3	9.7	100.0	88.0	12.0	100.0	81.5	18.5	100.0	93.2	6.8	100.0	S	S

TABLE 8. Employed doctoral scientists and engineers, by field of doctorate, race/ethnicity, and sex: 2006

${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 9. Employed doctoral scientists and engineers, by field of doctorate and citizenship status: 2006

Field	All employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
	Number						
All fields	621,630	556,640	468,060	88,580	64,990	40,880	24,110
Science	488,860	446,550	390,080	56,470	42,310	27,250	15,060
Biological, agricultural, and environmental life sciences	155,990	141,650	122,360	19,290	14,340	8,970	5,370
Agriculturalfood sciences	16,850	15,120	12,790	2,320	1,740	1,160	580
Biochemistry/biophysics	24,190	21,550	17,970	3,570	2,650	1,720	930
Cell/molecular biology	16,920	14,700	12,150	2,560	2,220	1,490	720
Environmental life sciences	6,190	5,820	5,370	450	370	160	210
Microbiology	10,990	10,180	8,890	1,300	810	510	300
Zoology	9,720	9,510	8,720	780	210	120	90
Other biological sciences	71,120	64,770	56,470	8,310	6,350	3,810	2,530
Computer and information sciences	13,580	10,560	7,460	3,110	3,010	1,960	1,050
Mathematics and statistics	29,170	24,340	19,400	4,930	4,840	3,070	1,760
Physical sciences	113,330	101,700	84,550	17,150	11,630	7,260	4,380
Astronomy/astrophysics	4,240	3,920	3,430	490	320	160	150
Chemistry, except biochemistry	57,450	51,590	42,710	8,880	5,860	3,740	2,120
Earth/atmospheric/ocean sciences	17,340	15,910	14,220	1,690	1,430	890	540
Physics	34,310	30,280	24,190	6,100	4,030	2,460	1,570
Psychology	96,570	94,450	90,050	4,400	2,130	1,630	490
Social sciences	80,220	73,860	66,260	7,590	6,370	4,360	2,010
Economics	21,780	18,570	15,870	2,690	3,210	1,990	1,220
Political sciences	18,010	17,090	15,600	1,490	930	710	220
Sociology	14,960	14,320	13,260	1,060	650	460	190
Other social sciences	25,470	23,880	21,530	2,350	1,580	1,200	390
Engineering	106,520	85,990	56,490	29,500	20,530	12,270	8,260
Aerospace/aeronautical/astronautical engineering	4,750	4,050	2,800	1,250	700	240	470
Chemical engineering	14,210	11,900	8,390	3,510	2,310	1,410	900
Civil engineering	9,530	7,770	4,710	3,070	1,760	1,120	640
Electrical/computer engineering	30,080	22,860	14,010	8,850	7,220	4,490	2,730
Materials/metallurgical engineering	11,000	8,740	6,210	2,530	2,260	1,270	990
Mechanical engineering	15,030	12,230	7,650	4,590	2,800	1,530	1,270
Other engineering	21,910	18,430	12,730	5,710	3,480	2,210	1,270
Health	26,250	24,100	21,490	2,610	2,150	1,360	790
	Percent						
All fields	100.0	89.5	75.3	14.2	10.5	6.6	3.9
Science	100.0	91.3	79.8	11.6	8.7	5.6	3.1
Biological, agricultural, and environmental life sciences	100.0	90.8	78.4	12.4	9.2	5.8	3.4
Agriculturalfood sciences	100.0	89.7	75.9	13.8	10.3	6.9	3.4
Biochemistry/biophysics	100.0	89.1	74.3	14.8	10.9	7.1	3.8
Cell/molecular biology	100.0	86.9	71.8	15.1	13.1	8.8	4.3
Environmental life sciences	100.0	94.1	86.7	7.3	5.9	2.6	3.4
Microbiology	100.0	92.6	80.8	11.8	7.4	4.6	2.8
Zoology	100.0	97.8	89.8	8.1	2.2	1.3	0.9
Other biological sciences	100.0	91.1	79.4	11.7	8.9	5.4	3.6
Computer and information sciences	100.0	77.8	54.9	22.9	22.2	14.4	7.7
Mathematics and statistics	100.0	83.4	66.5	16.9	16.6	10.5	6.0
Physical sciences	100.0	89.7	74.6	15.1	10.3	6.4	3.9
Astronomy/astrophysics	100.0	92.5	81.0	11.5	7.5	3.9	3.6

TABLE 9. Employed doctoral scientists and engineers, by field of doctorate and citizenship status: 2006

Field	All employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
Chemistry, except biochemistry	100.0	89.8	74.3	15.5	10.2	6.5	3.7
Earth/atmospheric/ocean sciences	100.0	91.7	82.0	9.7	8.3	5.1	3.1
Physics	100.0	88.3	70.5	17.8	11.7	7.2	4.6
Psychology	100.0	97.8	93.2	4.6	2.2	1.7	0.5
Social sciences	100.0	92.1	82.6	9.5	7.9	5.4	2.5
Economics	100.0	85.3	72.9	12.4	14.7	9.2	5.6
Political sciences	100.0	94.9	86.6	8.3	5.1	3.9	1.2
Sociology	100.0	95.7	88.6	7.1	4.3	3.1	1.2
Other social sciences	100.0	93.8	84.6	9.2	6.2	4.7	1.5
Engineering	100.0	80.7	53.0	27.7	19.3	11.5	7.8
Aerospace/aeronautical/astronautical engineering	100.0	85.2	58.9	26.3	14.8	5.0	9.8
Chemical engineering	100.0	83.8	59.0	24.7	16.2	9.9	6.3
Civil engineering	100.0	81.5	49.4	32.2	18.5	11.8	6.7
Electrical/computer engineering	100.0	76.0	46.6	29.4	24.0	14.9	9.1
Materials/metallurgical engineering	100.0	79.4	56.5	23.0	20.6	11.6	9.0
Mechanical engineering	100.0	81.4	50.9	30.5	18.6	10.2	8.4
Other engineering	100.0	84.1	58.1	26.1	15.9	10.1	5.8
Health	100.0	91.8	81.9	9.9	8.2	5.2	3.0

NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 10. Employed doctoral scientists and engineers, by field of doctorate and age: 2006

TABLE 10. Employed doctoral scientists and engineers, by field of doctorate and age: 2006

All									
Field	employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
Physics	100.0	10.3	13.2	16.5	13.3	10.1	12.0	13.6	10.9
Psychology	100.0	9.3	10.2	11.5	12.3	18.4	18.7	12.1	7.4
Social sciences	100.0	6.1	12.9	11.3	13.5	14.7	17.6	14.7	9.1
Economics	100.0	7.9	13.8	10.7	16.2	13.8	15.9	14.2	7.6
Political sciences	100.0	6.3	15.7	11.6	12.4	12.1	17.1	15.9	8.9
Sociology	100.0	4.7	11.7	11.6	10.7	15.3	18.1	15.9	12.1
Other social sciences	100.0	5.3	11.0	11.4	13.7	17.1	19.1	13.7	8.7
Engineering	100.0	14.0	15.1	17.6	15.5	11.7	9.6	8.9	7.6
Aerospace/aeronautical/astronautical engineering	100.0	10.8	23.9	14.6	12.0	6.5	9.3	11.4	11.5
Chemical engineering	100.0	16.9	13.4	15.4	17.3	11.0	8.8	9.4	7.9
Civil engineering	100.0	12.2	10.9	17.9	16.5	10.5	9.6	11.3	11.3
Electrical/computer engineering	100.0	15.2	17.5	19.4	13.1	11.4	7.8	8.9	6.5
Materials/metallurgical engineering	100.0	14.3	15.8	19.7	18.0	12.9	8.4	5.1	5.9
Mechanical engineering	100.0	12.9	15.2	20.0	16.7	10.8	10.5	7.9	5.9
Other engineering	100.0	12.6	12.3	14.7	15.8	14.3	12.5	9.4	8.4
Health	100.0	7.5	12.4	11.4	12.8	19.7	19.3	11.2	5.7

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 11. Employed doctoral scientists and engineers, by field of doctorate and years since doctorate: 2006

Field	All employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
	Number						
All fields	621,630	113,640	108,480	96,640	77,730	71,390	153,740
Science	488,860	85,160	81,990	73,060	61,720	59,720	127,210
Biological, agricultural, and environmental life sciences	155,990	29,110	27,170	23,830	19,290	19,370	37,210
Agricultural/food sciences	16,850	2,300	2,390	2,660	2,700	2,530	4,260
Biochemistry/biophysics	24,190	3,730	3,790	3,920	2,130	3,520	7,100
Cell/molecular biology	16,920	4,000	4,370	3,240	2,050	1,520	1,740
Environmental life sciences	6,190	1,540	1,210	660	700	710	1,380
Microbiology	10,990	1,720	1,680	1,750	1,460	950	3,440
Zoology	9,720	1,050	1,160	820	1,120	1,360	4,210
Other biological sciences	71,120	14,780	12,580	10,780	9,130	8,770	15,080
Computer and information sciences	13,580	3,640	3,590	3,280	1,780	880	410
Mathematics and statistics	29,170	4,670	4,710	3,970	2,920	2,920	9,980
Physical sciences	113,330	16,970	18,150	16,950	14,740	12,500	34,040
Astronomy/astrophysics	4,240	890	710	650	310	520	1,150
Chemistry, except biochemistry	57,450	8,710	9,090	8,420	7,610	6,450	17,170
Earth/atmospheric/ocean sciences	17,340	2,700	2,950	2,810	2,480	2,190	4,210
Physics	34,310	4,660	5,400	5,070	4,340	3,340	11,520
Psychology	96,570	16,120	15,380	14,300	13,280	13,820	23,670
Social sciences	80,220	14,650	12,990	10,740	9,710	10,240	21,890
Economics	21,780	3,130	3,200	2,780	2,850	3,100	6,720
Political sciences	18,010	3,640	3,230	2,490	1,950	1,560	5,140
Sociology	14,960	2,610	2,440	1,570	1,740	2,200	4,400
Other social sciences	25,470	5,270	4,120	3,890	3,160	3,390	5,630
Engineering	106,520	21,170	21,050	18,910	13,020	9,160	23,210
Aerospace/aeronautical/astronautical engineering	4,750	960	1,010	700	400	270	1,420
Chemical engineering	14,210	2,670	2,270	2,050	2,380	1,210	3,630
Civil engineering	9,530	1,690	1,930	1,530	1,270	930	2,170
Electrical/computer engineering	30,080	6,530	6,390	5,460	3,560	2,260	5,880
Materials/metallurgical engineering	11,000	1,900	2,400	2,440	1,250	880	2,130
Mechanical engineering	15,030	3,230	3,090	3,000	1,750	1,070	2,890
Other engineering	21,910	4,180	3,960	3,730	2,410	2,540	5,090
Health	26,250	7,310	5,440	4,670	2,990	2,510	3,330
				cent			
All fields	100.0	18.3	17.5	15.5	12.5	11.5	24.7
Science	100.0	17.4	16.8	14.9	12.6	12.2	26.0
Biological, agricultural, and environmental life sciences	100.0	18.7	17.4	15.3	12.4	12.4	23.9
Agricultural/food sciences	100.0	13.6	14.2	15.8	16.0	15.0	25.3
Biochemistry/biophysics	100.0	15.4	15.6	16.2	8.8	14.6	29.3
Cell/molecular biology	100.0	23.6	25.8	19.1	12.1	9.0	10.3
Environmental life sciences	100.0	24.8	19.5	10.7	11.3	11.4	22.2
Microbiology	100.0	15.6	15.3	15.9	13.3	8.7	31.3
Zoology	100.0	10.8	11.9	8.4	11.5	14.0	43.3
Other biological sciences	100.0	20.8	17.7	15.2	12.8	12.3	21.2
Computer and information sciences	100.0	26.8	26.4	24.1	13.1	6.5	3.0
Mathematics and statistics	100.0	16.0	16.2	13.6	10.0	10.0	34.2
Physical sciences	100.0	15.0	16.0	15.0	13.0	11.0	30.0
Astronomy/astrophysics	100.0	21.1	16.8	15.4	7.4	12.2	27.1
Chemistry, except biochemistry	100.0	15.2	15.8	14.6	13.2	11.2	29.9

TABLE 11. Employed doctoral scientists and engineers, by field of doctorate and years since doctorate: 2006

Field			5 or		

NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 12. Employed doctoral scientists and engineers, by field of doctorate and sector of employment: 2006

Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4 -year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private nonprofit	Federal government	State and local government	$\begin{array}{r} \text { Self- } \\ \text { employed }^{\text {d }} \end{array}$	Other ${ }^{\text {e }}$
	Number								
All fields	621,630	271,540	20,920	192,900	38,560	38,450	18,210	39,620	1,430
Science	488,860	226,400	18,980	129,050	32,640	31,330	15,080	34,070	1,310
Biological, agricultural, and									
Agricultural/food sciences	16,850	7,540	460	5,560	820	1,570	250	660	S
Biochemistry/biophysics	24,190	11,840	620	7,540	1,400	1,470	410	920	S
Cell/molecular biology	16,920	9,150	480	4,260	1,590	850	230	360	S
Environmental life sciences	6,190	2,510	160	1,170	380	1,360	460	140	S
Microbiology	10,990	5,010	430	3,340	680	860	310	360	S
Zoology	9,720	5,440	530	1,330	300	1,140	460	520	S
Other biological sciences	71,120	38,330	2,260	16,040	4,780	6,240	1,410	1,960	100
Computer and information sciences	13,580	5,790	180	6,230	490	260	260	350	S
Mathematics and statistics	29,170	17,290	860	7,310	1,050	1,290	350	1,020	S
Physical sciences	113,330	38,760	3,820	48,680	7,030	7,510	3,350	4,110	70
Astronomy/astrophysics	4,240	2,310	140	670	490	370	120	130	S
Chemistry, except biochemistry	57,450	16,100	2,270	30,770	2,330	2,290	1,250	2,390	S
Earth/atmospheric/ocean sciences	17,340	8,320	580	3,570	1,290	2,250	770	550	S
Physics	34,310	12,030	840	13,660	2,910	2,590	1,220	1,030	S
Psychology	96,570	34,640	6,050	18,130	9,440	3,660	4,880	19,700	70
Social sciences	80,220	50,110	3,120	9,460	4,670	5,120	2,710	3,990	1,050
Economics	21,780	12,100	470	3,500	840	2,520	340	1,110	910
Political sciences	18,010	11,890	690	1,860	1,060	760	780	880	100
Sociology	14,960	10,410	690	1,030	1,200	430	500	680	S
Other social sciences	25,470	15,710	1,270	3,070	1,570	1,420	1,090	1,310	S
Engineering	106,520	30,230	1,140	59,050	3,680	5,350	2,510	4,460	110
Aerospace/aeronautical/astronautical engineering	4,750	1,310	S	2,280	140	730	S	290	S
Chemical engineering	14,210	2,630	330	9,280	530	550	280	610	S
Civil engineering	9,530	3,570	S	4,000	180	540	700	490	S
Electrical/computer engineering	30,080	8,650	250	18,060	1,010	830	260	1,000	S
Materials/metallurgical engineering	11,000	2,010	160	7,350	470	590	210	210	S
Mechanical engineering	15,030	4,110	130	8,880	370	630	170	710	S
Other engineering	21,910	7,940	270	9,180	980	1,480	890	1,150	S
Health	26,250	14,920	800	4,810	2,240	1,780	620	1,080	S
	Percent								
All fields	100.0	43.7	3.4	31.0	6.2	6.2	2.9	6.4	0.2
Science	100.0	46.3	3.9	26.4	6.7	6.4	3.1	7.0	0.3
Biological, agricultural, andenvironmental life sciences									
Agriculturalffood sciences	100.0	44.7	2.7	33.0	4.9	9.3	1.5	3.9	S
Biochemistry/biophysics	100.0	48.9	2.6	31.2	5.8	6.1	1.7	3.8	S
Cell/molecular biology	100.0	54.1	2.8	25.2	9.4	5.0	1.4	2.1	S
Environmental life sciences	100.0	40.5	2.5	19.0	6.2	22.0	7.4	2.3	S
Microbiology	100.0	45.5	3.9	30.4	6.2	7.8	2.8	3.3	S
Zoology	100.0	56.0	5.4	13.7	3.1	11.7	4.7	5.3	S
Other biological sciences	100.0	53.9	3.2	22.6	6.7	8.8	2.0	2.8	0.1
Computer and information sciences	100.0	42.6	1.3	45.9	3.6	1.9	1.9	2.5	S
Mathematics and statistics	100.0	59.3	3.0	25.0	3.6	4.4	1.2	3.5	S
Physical sciences	100.0	34.2	3.4	42.9	6.2	6.6	3.0	3.6	0.1

TABLE 12. Employed doctoral scientists and engineers, by field of doctorate and sector of employment: 2006

Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text { }}$	Private non- profit	Federal government	State and local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
Astronomy/astrophysics	100.0	54.5	3.2	15.9	11.6	8.8	2.7	3.1	S
Chemistry, except biochemistry	100.0	28.0	4.0	53.6	4.1	4.0	2.2	4.2	S
Earth/atmospheric/ocean sciences	100.0	48.0	3.3	20.6	7.5	13.0	4.4	3.2	S
Physics	100.0	35.1	2.4	39.8	8.5	7.6	3.6	3.0	S
Psychology	100.0	35.9	6.3	18.8	9.8	3.8	5.1	20.4	0.1
Social sciences	100.0	62.5	3.9	11.8	5.8	6.4	3.4	5.0	1.3
Economics	100.0	55.5	2.1	16.1	3.9	11.6	1.6	5.1	4.2
Political sciences	100.0	66.0	3.8	10.3	5.9	4.2	4.3	4.9	0.6
Sociology	100.0	69.6	4.6	6.9	8.0	2.8	3.3	4.6	S
Other social sciences	100.0	61.7	5.0	12.1	6.2	5.6	4.3	5.1	S
Engineering	100.0	28.4	1.1	55.4	3.5	5.0	2.4	4.2	0.1
Aerospace/aeronautical/astronautical engineering	100.0	27.6	S	48.0	2.9	15.3	S	6.2	S
Chemical engineering	100.0	18.5	2.3	65.3	3.7	3.9	2.0	4.3	S
Civil engineering	100.0	37.5	S	42.0	1.9	5.6	7.4	5.1	S
Electrical/computer engineering	100.0	28.8	0.8	60.0	3.4	2.8	0.9	3.3	S
Materials/metallurgical engineering	100.0	18.3	1.4	66.9	4.3	5.3	1.9	1.9	S
Mechanical engineering	100.0	27.4	0.8	59.1	2.5	4.2	1.1	4.7	S
Other engineering	100.0	36.2	1.2	41.9	4.5	6.8	4.1	5.3	S
Health	100.0	56.8	3.0	18.3	8.5	6.8	2.4	4.1	S

${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{e}$ Includes employers not broken out separately.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 13. Employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 2006

Employment sector and field	All employed	Male	Female	All employed	Male	Female
	Number			Percent		
All Sectors	621,630	438,900	182,730	100.0	70.6	29.4
Science	488,860	332,460	156,400	100.0	68.0	32.0
Biological, agricultural, and environmental life sciences	155,990	104,650	51,340	100.0	67.1	32.9
Computer and information sciences	13,580	11,240	2,330	100.0	82.8	17.2
Mathematics and statistics	29,170	24,060	5,110	100.0	82.5	17.5
Physical sciences	113,330	94,660	18,680	100.0	83.5	16.5
Psychology	96,570	46,310	50,260	100.0	48.0	52.0
Social sciences	80,220	51,550	28,680	100.0	64.3	35.7
Engineering	106,520	96,060	10,460	100.0	90.2	9.8
Health	26,250	10,380	15,870	100.0	39.5	60.5
4 -year educational institutions ${ }^{\text {a }}$	271,540	182,920	88,620	100.0	67.4	32.6
Science	226,400	151,110	75,290	100.0	66.7	33.3
Biological, agricultural, and environmental life sciences	79,810	52,570	27,240	100.0	65.9	34.1
Computer and information sciences	5,790	4,530	1,250	100.0	78.3	21.7
Mathematics and statistics	17,290	14,010	3,280	100.0	81.0	19.0
Physical sciences	38,760	31,790	6,970	100.0	82.0	18.0
Psychology	34,640	15,980	18,660	100.0	46.1	53.9
Social sciences	50,110	32,220	17,880	100.0	64.3	35.7
Engineering	30,230	26,570	3,660	100.0	87.9	12.1
Health	14,920	5,250	9,670	100.0	35.2	64.8
Other educational institutions ${ }^{\text {b }}$	20,920	11,930	8,980	100.0	57.0	43.0
Science	18,980	10,730	8,250	100.0	56.5	43.5
Biological, agricultural, and environmental life sciences	4,940	2,830	2,110	100.0	57.3	42.7
Computer and information sciences	180	170	S	100.0	93.6	S
Mathematics and statistics	860	690	170	100.0	80.2	19.8
Physical sciences	3,820	2,880	950	100.0	75.3	24.7
Psychology	6,050	2,430	3,630	100.0	40.1	59.9
Social sciences	3,120	1,730	1,390	100.0	55.5	44.5
Engineering	1,140	1,010	140	100.0	88.0	12.0
Health	800	200	600	100.0	24.8	75.2
Private for-profit ${ }^{\text {a }}$	192,900	155,560	37,340	100.0	80.6	19.4
Science	129,050	98,580	30,460	100.0	76.4	23.6
Biological, agricultural, and environmental life sciences	39,240	27,980	11,270	100.0	71.3	28.7
Computer and information sciences	6,230	5,450	780	100.0	87.4	12.6
Mathematics and statistics	7,310	6,320	990	100.0	86.5	13.5
Physical sciences	48,680	41,270	7,410	100.0	84.8	15.2
Psychology	18,130	10,430	7,700	100.0	57.5	42.5
Social sciences	9,460	7,140	2,310	100.0	75.5	24.5
Engineering	59,050	54,260	4,790	100.0	91.9	8.1
Health	4,810	2,710	2,090	100.0	56.4	43.6
Private nonprofit	38,560	23,870	14,690	100.0	61.9	38.1
Science	32,640	19,990	12,650	100.0	61.2	38.8
Biological, agricultural, and environmental life sciences	9,960	6,230	3,730	100.0	62.6	37.4
Computer and information sciences	490	320	170	100.0	65.0	35.0
Mathematics and statistics	1,050	790	270	100.0	74.8	25.2
Physical sciences	7,030	5,930	1,100	100.0	84.3	15.7
Psychology	9,440	4,600	4,840	100.0	48.7	51.3
Social sciences	4,670	2,130	2,540	100.0	45.5	54.5
Engineering	3,680	3,200	480	100.0	87.1	12.9
Health	2,240	680	1,560	100.0	30.3	69.7
Federal government	38,450	27,440	11,010	100.0	71.4	28.6
Science	31,330	21,970	9,360	100.0	70.1	29.9
Biological, agricultural, and environmental life sciences	13,480	9,160	4,320	100.0	68.0	32.0
Computer and information sciences	260	220	S	100.0	82.5	S
Mathematics and statistics	1,290	1,090	200	100.0	84.4	15.6

TABLE 13. Employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 2006

| Employment sector and field | All employed | Male | Female | All employed |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | | Namber | | |
| | | | | |

S = suppressed for reliability or confidentiality.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\text {b }}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTES: Numbers are rounded to nearest 10 . Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 14. Employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006

Employment sector and field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
	Number						
All sectors	621,630	4,130	105,830	18,870	18,190	473,610	1,010
Science	488,860	3,530	65,950	15,010	14,970	388,510	890
Biological, agricultural, and environmental life sciences	155,990	1,110	25,070	3,890	4,540	121,050	320
Computer and information sciences	13,580	S	4,320	290	320	8,600	S
Mathematics and statistics	29,170	80	6,100	590	890	21,510	S
Physical sciences	113,330	600	20,620	1,910	2,720	87,270	210
Psychology	96,570	830	3,030	4,220	3,680	84,600	210
Social sciences	80,220	870	6,800	4,100	2,820	65,490	150
Engineering	106,520	390	36,840	2,320	2,460	64,420	80
Health	26,250	200	3,050	1,540	760	20,670	S
4-year educational institutions ${ }^{\text {b }}$	271,540	1,850	38,260	10,380	9,370	211,270	420
Science	226,400	1,600	29,080	8,320	7,960	179,060	390
Biological, agricultural, and environmental life sciences	79,810	520	13,030	2,170	2,630	61,390	80
Computer and information sciences	5,790	S	1,760	180	160	3,690	S
Mathematics and statistics	17,290	80	3,140	410	600	13,060	S
Physical sciences	38,760	200	5,790	820	1,190	30,670	90
Psychology	34,640	290	1,370	1,900	1,400	29,530	170
Social sciences	50,110	510	3,990	2,840	1,990	40,740	50
Engineering	30,230	110	7,950	1,070	950	20,130	S
Health	14,920	150	1,230	990	460	12,080	S
Other educational institutions ${ }^{\text {c }}$	20,920	100	1,440	1,310	1,000	17,050	S
Science	18,980	100	1,100	1,190	930	15,650	S
Biological, agricultural, and environmental life sciences	4,940	S	330	150	140	4,310	S
Computer and information sciences	180	S	S	S	S	120	S
Mathematics and statistics	860	S	180	S	60	610	S
Physical sciences	3,820	S	210	220	130	3,270	S
Psychology	6,050	S	220	500	420	4,900	S
Social sciences	3,120	80	140	270	170	2,450	S
Engineering	1,140	S	270	S	S	800	S
Health	800	S	80	80	S	600	S
Private for-profit ${ }^{\text {d }}$	192,900	1,030	51,450	3,570	4,130	132,330	380
Science	129,050	770	25,020	2,500	2,950	97,490	320
Biological, agricultural, and environmental life sciences	39,240	180	7,230	810	1,070	29,840	120
Computer and information sciences	6,230	S	2,240	60	110	3,770	S
Mathematics and statistics	7,310	S	2,120	90	160	4,940	S
Physical sciences	48,680	320	11,700	590	800	35,170	100
Psychology	18,130	110	520	740	490	16,240	S
Social sciences	9,460	130	1,220	220	310	7,520	60
Engineering	59,050	230	25,290	910	1,100	31,460	50
Health	4,810	S	1,130	170	90	3,380	S
Private nonprofit	38,560	200	5,140	940	1,010	31,210	50
Science	32,640	200	3,940	790	810	26,850	50
Biological, agricultural, and environmental life sciences	9,960	60	1,870	160	230	7,620	S
Computer and information sciences	490	S	110	S	S	350	S
Mathematics and statistics	1,050	S	110	S	S	920	S
Physical sciences	7,030	S	1,010	S	80	5,840	S
Psychology	9,440	80	350	300	370	8,330	S
Social sciences	4,670	S	500	270	100	3,780	S

TABLE 14. Employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006

Employment sector and field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	American Indian/ Alaska Native	Asian	Black	Hispanic	White	
Engineering	3,680	S	990	S	130	2,530	S
Health	2,240	S	210	120	80	1,840	S
Federal government	38,450	260	4,840	1,210	960	31,090	80
Science	31,330	240	3,670	990	840	25,510	80
Biological, agricultural, and environmental life sciences	13,480	180	1,880	390	230	10,750	50
Computer and information sciences	260	S	S	S	S	230	S
Mathematics and statistics	1,290	S	310	S	S	930	S
Physical sciences	7,510	S	970	190	230	6,120	S
Psychology	3,660	S	S	200	220	3,190	S
Social sciences	5,120	S	450	190	130	4,290	S
Engineering	5,350	S	910	150	80	4,180	S
Health	1,780	S	270	70	S	1,390	S
State and local government	18,210	270	2,410	840	580	14,060	S
Science	15,080	220	1,560	690	490	12,090	S
Biological, agricultural, and environmental life sciences	3,530	S	430	120	80	2,820	S
Computer and information sciences	260	S	120	S	S	130	S
Mathematics and statistics	350	S	120	S	S	200	S
Physical sciences	3,350	S	430	S	140	2,740	S
Psychology	4,880	80	240	330	220	4,010	S
Social sciences	2,710	70	220	190	S	2,190	S
Engineering	2,510	S	780	50	S	1,600	S
Health	620	S	70	100	S	380	S
Self-employed ${ }^{\text {e }}$	39,620	370	2,020	600	1,080	35,540	S
Science	34,070	370	1,350	520	950	30,880	S
Biological, agricultural, and environmental life sciences	4,920	140	300	100	150	4,230	S
Computer and information sciences	350	S	S	S	S	290	S
Mathematics and statistics	1,020	S	130	S	S	860	S
Physical sciences	4,110	S	480	S	140	3,470	S
Psychology	19,700	210	320	260	570	18,340	S
Social sciences	3,990	S	110	120	S	3,690	S
Engineering	4,460	S	620	S	120	3,670	S
Health	1,080	S	60	S	S	980	S
Other ${ }^{\text {f }}$	1,430	S	260	S	60	1,060	S
Science	1,310	S	230	S	S	990	S
Biological, agricultural, and environmental life sciences	110	S	S	S	S	90	S
Computer and information sciences	S	S	S	S	S	S	S
Mathematics and statistics	S	S	S	S	S	S	S
Physical sciences	70	S	S	S	S	S	S
Psychology	70	S	S	S	S	60	S
Social sciences	1,050	S	180	S	S	830	S
Engineering	110	S	S	S	S	60	S
Health	S	S	S	S	S	S	S
	Percent						
All sectors	100.0	0.7	17.0	3.0	2.9	76.2	0.2
Science	100.0	0.7	13.5	3.1	3.1	79.5	0.2
Biological, agricultural, and environmental							
Computer and information sciences	100.0	S	31.8	2.1	2.4	63.3	S
Mathematics and statistics	100.0	0.3	20.9	2.0	3.0	73.7	S
Physical sciences	100.0	0.5	18.2	1.7	2.4	77.0	0.2

TABLE 14. Employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006

Employment sector and field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	American Indian/ Alaska Native	Asian	Black	Hispanic	White	$\begin{array}{r} \text { Other } \\ \text { race/ } \\ \text { ethnicity }^{\mathrm{a}} \end{array}$
Psychology	100.0	0.9	3.1	4.4	3.8	87.6	0.2
Social sciences	100.0	1.1	8.5	5.1	3.5	81.6	0.2
Engineering	100.0	0.4	34.6	2.2	2.3	60.5	0.1
Health	100.0	0.8	11.6	5.9	2.9	78.7	S
4 -year educational institutions ${ }^{\text {b }}$	100.0	0.7	14.1	3.8	3.4	77.8	0.2
Science	100.0	0.7	12.8	3.7	3.5	79.1	0.2
Biological, agricultural, and environmental life sciences	100.0	0.6	16.3	2.7	3.3	76.9	0.1
Computer and information sciences	100.0	S	30.5	3.1	2.8	63.7	S
Mathematics and statistics	100.0	0.5	18.2	2.4	3.4	75.5	S
Physical sciences	100.0	0.5	14.9	2.1	3.1	79.1	0.2
Psychology	100.0	0.8	3.9	5.5	4.0	85.2	0.5
Social sciences	100.0	1.0	8.0	5.7	4.0	81.3	0.1
Engineering	100.0	0.4	26.3	3.5	3.1	66.6	S
Health	100.0	1.0	8.3	6.6	3.1	81.0	S
Other educational institutions ${ }^{\text {c }}$	100.0	0.5	6.9	6.3	4.8	81.5	S
Science	100.0	0.5	5.8	6.3	4.9	82.5	S
Biological, agricultural, and environmental life sciences	100.0	S	6.6	3.1	2.9	87.3	S
Computer and information sciences	100.0	S	S	S	S	63.8	S
Mathematics and statistics	100.0	S	20.5	S	6.6	70.5	S
Physical sciences	100.0	S	5.4	5.6	3.5	85.4	S
Psychology	100.0	S	3.6	8.3	6.9	81.0	S
Social sciences	100.0	2.6	4.4	8.6	5.6	78.5	S
Engineering	100.0	S	23.3	S	S	69.6	S
Health	100.0	S	10.0	9.6	S	75.6	S
Private for-profit ${ }^{\text {d }}$	100.0	0.5	26.7	1.9	2.1	68.6	0.2
Science	100.0	0.6	19.4	1.9	2.3	75.5	0.2
Biological, agricultural, and environmental life sciences	100.0	0.5	18.4	2.1	2.7	76.0	0.3
Computer and information sciences	100.0	S	36.0	0.9	1.7	60.6	S
Mathematics and statistics	100.0	S	29.0	1.2	2.2	67.7	S
Physical sciences	100.0	0.6	24.0	1.2	1.6	72.2	0.2
Psychology	100.0	0.6	2.9	4.1	2.7	89.6	S
Social sciences	100.0	1.4	12.9	2.3	3.3	79.5	0.6
Engineering	100.0	0.4	42.8	1.5	1.9	53.3	0.1
Health	100.0	S	23.5	3.5	1.8	70.3	S
Private nonprofit	100.0	0.5	13.3	2.5	2.6	80.9	0.1
Science	100.0	0.6	12.1	2.4	2.5	82.2	0.2
Biological, agricultural, and environmental life sciences	100.0	0.6	18.8	1.7	2.3	76.5	S
Computer and information sciences	100.0	S	22.6	S	S	71.9	S
Mathematics and statistics	100.0	S	10.1	S	S	87.3	S
Physical sciences	100.0	S	14.3	S	1.2	83.1	S
Psychology	100.0	0.9	3.7	3.2	3.9	88.2	S
Social sciences	100.0	S	10.7	5.7	2.1	81.0	S
Engineering	100.0	S	26.9	S	3.4	68.7	S
Health	100.0	S	9.3	5.2	3.4	82.2	S
Federal government	100.0	0.7	12.6	3.1	2.5	80.8	0.2
Science	100.0	0.8	11.7	3.2	2.7	81.4	0.2
Biological, agricultural, and environmental life sciences	100.0	1.3	14.0	2.9	1.7	79.7	0.4
Computer and information sciences	100.0	S	S	S	S	86.7	S
Mathematics and statistics	100.0	S	23.9	S	S	72.0	S

TABLE 14. Employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006

Employment sector and field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	American Indian/ Alaska Native	Asian	Black	Hispanic	White	
Physical sciences	100.0	S	12.9	2.6	3.1	81.4	S
Psychology	100.0	S	S	5.4	5.9	87.4	S
Social sciences	100.0	S	8.7	3.8	2.5	83.7	S
Engineering	100.0	S	17.0	2.9	1.6	78.2	S
Health	100.0	S	15.1	3.7	S	78.5	S
State and local government	100.0	1.5	13.3	4.6	3.2	77.2	S
Science	100.0	1.5	10.3	4.6	3.3	80.1	S
Biological, agricultural, and environmental life sciences	100.0	S	12.2	3.4	2.4	79.8	S
Computer and information sciences	100.0	S	48.4	S	S	51.6	S
Mathematics and statistics	100.0	S	34.0	S	S	56.6	S
Physical sciences	100.0	S	12.8	S	4.1	81.7	S
Psychology	100.0	1.7	4.9	6.7	4.5	82.2	S
Social sciences	100.0	2.4	8.1	7.0	S	80.7	S
Engineering	100.0	S	31.2	2.0	S	63.8	S
Health	100.0	S	11.6	16.0	S	61.2	S
Self-employed ${ }^{\text {e }}$	100.0	0.9	5.1	1.5	2.7	89.7	S
Science	100.0	1.1	4.0	1.5	2.8	90.6	S
Biological, agricultural, and environmental life sciences	100.0	2.8	6.0	1.9	3.1	86.0	S
Computer and information sciences	100.0	S	S	S	S	83.2	S
Mathematics and statistics	100.0	S	12.5	S	S	84.1	S
Physical sciences	100.0	S	11.7	S	3.4	84.4	S
Psychology	100.0	1.1	1.6	1.3	2.9	93.1	S
Social sciences	100.0	S	2.9	3.0	S	92.7	S
Engineering	100.0	S	13.9	S	2.6	82.4	S
Health	100.0	S	5.2	S	S	90.9	S
Other ${ }^{\text {f }}$	100.0	S	18.4	S	4.0	74.1	S
Science	100.0	S	17.6	S	S	75.6	S
Biological, agricultural, and environmental life sciences	100.0	S	S	S	S	82.2	S
Computer and information sciences	100.0	S	S	S	S	S	S
Mathematics and statistics	100.0	S	S	S	S	S	S
Physical sciences	100.0	S	S	S	S	S	S
Psychology	100.0	S	S	S	S	84.8	S
Social sciences	100.0	S	17.3	S	S	78.8	S
Engineering	100.0	S	S	S	S	52.3	S
Health	100.0	S	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{c}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {d }}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Field	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
		Number									
All fields	621,630	386,480	204,820	150,240	38,660	87,110	47,650	258,910	99,310	188,140	48,260
Science	488,860	294,880	151,810	135,120	21,140	52,970	32,170	203,940	87,290	158,550	36,790
Biological, agricultural, and environmental life sciences	155,990	104,880	52,700	58,020	3,780	15,940	5,330	71,380	22,050	42,510	11,980
Agricultural/food sciences	16,850	11,070	8,290	2,720	250	2,870	530	8,370	1,330	4,160	1,760
Biochemistry/biophysics	24,190	17,240	6,920	10,590	640	3,270	980	11,680	3,420	5,220	1,360
Cell/molecular biology	16,920	11,890	4,830	8,260	170	1,690	430	7,600	2,280	3,610	1,530
Environmental life sciences	6,190	4,030	3,330	850	270	540	360	3,150	420	1,660	750
Microbiology	10,990	6,980	3,210	4,260	240	1,210	210	5,480	1,590	2,550	980
Zoology	9,720	6,050	3,120	3,340	180	360	280	4,510	1,200	3,970	810
Other biological sciences	71,120	47,610	23,000	27,990	2,020	6,000	2,530	30,600	11,800	21,340	4,800
Computer and information sciences	13,580	9,440	5,060	2,690	1,380	2,190	4,490	4,220	510	4,270	760
Mathematics and statistics	29,170	19,090	7,930	9,220	2,350	2,130	5,510	7,840	1,220	14,720	2,000
Physical sciences	113,330	78,110	39,430	30,360	9,660	23,990	11,780	46,970	7,410	27,830	8,990
Astronomy/astrophysics	4,240	3,310	830	2,250	400	440	1,000	1,400	160	1,340	230
Chemistry, except biochemistry	57,450	37,780	21,390	12,040	3,310	14,880	2,410	27,260	4,230	12,440	5,430
Earth/atmospheric/ocean sciences	17,340	12,190	6,320	6,630	880	1,440	1,880	6,690	1,090	5,790	1,210
Physics	34,310	24,830	10,880	9,450	5,070	7,230	6,500	11,630	1,930	8,270	2,120
Psychology	96,570	34,860	20,160	12,690	2,040	4,770	2,080	43,070	47,590	27,510	6,530
Social sciences	80,220	48,500	26,540	22,140	1,940	3,960	2,980	30,460	8,510	41,700	6,530
Economics	21,780	14,590	10,080	5,280	680	710	1,310	8,100	2,440	9,280	1,750
Political sciences	18,010	9,760	4,150	5,400	370	860	470	7,340	1,830	10,160	1,570
Sociology	14,960	9,470	4,880	4,610	220	760	470	5,520	1,170	8,690	1,030
Other social sciences	25,470	14,680	7,430	6,860	670	1,630	730	9,510	3,080	13,580	2,170
Engineering	106,520	77,390	42,610	11,800	16,910	31,380	14,810	43,150	6,430	19,100	9,380
Aerospace/aeronautical/astronautical engineering	4,750	3,610	1,800	660	800	1,400	900	1,760	320	760	410
Chemical engineering	14,210	9,960	5,180	1,510	2,140	4,950	1,610	6,190	1,110	1,830	1,420
Civil engineering	9,530	6,450	3,740	930	2,210	1,080	970	4,110	970	2,580	830
Electrical/computer engineering	30,080	23,030	12,250	2,830	5,340	10,480	5,450	11,090	1,080	5,440	1,980
Materials/metallurgical engineering	11,000	8,060	4,690	1,290	1,140	4,230	430	5,030	480	1,260	1,520
Mechanical engineering	15,030	11,150	5,930	1,750	2,870	4,600	2,230	5,790	790	2,580	1,290
Other engineering	21,910	15,120	9,030	2,830	2,410	4,640	3,220	9,180	1,680	4,650	1,930
Health	26,250	14,210	10,400	3,310	600	2,760	670	11,820	5,590	10,500	2,080
		Percent									
All fields	621,630	62.2	32.9	24.2	6.2	14.0	7.7	41.7	16.0	30.3	7.8
Science	488,860	60.3	31.1	27.6	4.3	10.8	6.6	41.7	17.9	32.4	7.5

Field	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Biological, agricultural, and environmental life sciences	155,990	67.2	33.8	37.2	2.4	10.2	3.4	45.8	14.1	27.3	7.7
Agricultural/food sciences	16,850	65.7	49.2	16.1	1.5	17.0	3.2	49.6	7.9	24.7	10.5
Biochemistry/biophysics	24,190	71.3	28.6	43.8	2.7	13.5	4.0	48.3	14.1	21.6	5.6
Cell/molecular biology	16,920	70.3	28.5	48.8	1.0	10.0	2.6	44.9	13.5	21.3	9.0
Environmental life sciences	6,190	65.2	53.9	13.8	4.4	8.7	5.8	50.8	6.8	26.8	12.1
Microbiology	10,990	63.5	29.2	38.7	2.2	11.0	1.9	49.9	14.4	23.2	8.9
Zoology	9,720	62.2	32.1	34.4	1.9	3.7	2.9	46.4	12.3	40.8	8.3
Other biological sciences	71,120	66.9	32.3	39.4	2.8	8.4	3.6	43.0	16.6	30.0	6.8
Computer and information sciences	13,580	69.5	37.3	19.8	10.2	16.2	33.0	31.1	3.7	31.5	5.6
Mathematics and statistics	29,170	65.5	27.2	31.6	8.0	7.3	18.9	26.9	4.2	50.5	6.9
Physical sciences	113,330	68.9	34.8	26.8	8.5	21.2	10.4	41.4	6.5	24.6	7.9
Astronomy/astrophysics	4,240	78.1	19.7	53.0	9.5	10.4	23.6	33.0	3.8	31.5	5.5
Chemistry, except biochemistry	57,450	65.8	37.2	21.0	5.8	25.9	4.2	47.5	7.4	21.6	9.5
Earth/atmospheric/ocean sciences	17,340	70.3	36.5	38.2	5.1	8.3	10.8	38.6	6.3	33.4	7.0
Physics	34,310	72.4	31.7	27.5	14.8	21.1	18.9	33.9	5.6	24.1	6.2
Psychology	96,570	36.1	20.9	13.1	2.1	4.9	2.2	44.6	49.3	28.5	6.8
Social sciences	80,220	60.5	33.1	27.6	2.4	4.9	3.7	38.0	10.6	52.0	8.1
Economics	21,780	67.0	46.3	24.2	3.1	3.2	6.0	37.2	11.2	42.6	8.0
Political sciences	18,010	54.2	23.0	30.0	2.0	4.8	2.6	40.8	10.2	56.4	8.7
Sociology	14,960	63.3	32.6	30.8	1.5	5.1	3.1	36.9	7.8	58.1	6.9
Other social sciences	25,470	57.6	29.2	26.9	2.6	6.4	2.9	37.3	12.1	53.3	8.5
Engineering	106,520	72.7	40.0	11.1	15.9	29.5	13.9	40.5	6.0	17.9	8.8
Aerospace/aeronautical/astronautical engineering	4,750	76.0	38.0	13.8	16.9	29.4	19.0	36.9	6.7	15.9	8.6
Chemical engineering	14,210	70.1	36.4	10.6	15.1	34.8	11.3	43.6	7.8	12.8	10.0
Civil engineering	9,530	67.7	39.2	9.8	23.2	11.3	10.1	43.2	10.1	27.1	8.7
Electrical/computer engineering	30,080	76.5	40.7	9.4	17.8	34.8	18.1	36.9	3.6	18.1	6.6
Materials/metallurgical engineering	11,000	73.3	42.7	11.8	10.3	38.5	3.9	45.7	4.3	11.5	13.8
Mechanical engineering	15,030	74.2	39.4	11.6	19.1	30.6	14.9	38.5	5.3	17.2	8.6
Other engineering	21,910	69.0	41.2	12.9	11.0	21.2	14.7	41.9	7.7	21.2	8.8
Health	26,250	54.2	39.6	12.6	2.3	10.5	2.5	45.0	21.3	40.0	7.9

 most hours during a typical week on this job?"

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 16. Employed doctoral scientists and engineers, by employer location and broad field of doctorate: 2006

Employer location	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	$\begin{array}{r} \text { Social } \\ \text { sciences } \end{array}$		
	Number									
All locations	621,630	488,860	155,990	13,580	29,170	113,330	96,570	80,220	106,520	26,250
New England	52,260	41,750	13,900	1,030	2,060	9,270	8,610	6,890	8,320	2,190
Connecticut	10,330	8,330	2,550	120	210	2,240	2,130	1,080	1,450	550
Maine	2,350	1,980	610	S	S	350	500	460	230	140
Massachusetts	32,400	26,110	9,600	700	1,510	5,590	4,670	4,030	5,100	1,190
New Hampshire	2,470	1,780	310	60	170	530	410	310	600	90
Rhode Island	3,020	2,240	370	100	140	480	580	570	630	150
Vermont	1,690	1,310	470	S	S	80	320	440	310	70
Middle Atlantic	95,780	77,410	21,660	2,690	5,030	17,900	16,590	13,550	13,890	4,490
New Jersey	20,810	16,480	4,290	770	1,420	5,320	2,550	2,130	3,270	1,060
New York	45,850	37,790	10,230	1,520	2,400	7,220	9,110	7,320	6,270	1,790
Pennsylvania	29,120	23,130	7,130	400	1,210	5,350	4,930	4,110	4,350	1,630
East North Central	81,940	63,430	19,020	1,340	4,170	14,440	13,290	11,180	15,010	3,500
Illinois	24,110	18,960	5,380	620	1,060	4,360	3,610	3,940	4,070	1,070
Indiana	9,870	7,770	2,320	150	600	1,750	1,420	1,530	1,640	450
Michigan	17,900	13,050	3,950	200	1,050	2,900	3,060	1,890	4,350	500
Ohio	20,540	15,720	4,820	250	880	3,790	3,490	2,480	3,800	1,030
Wisconsin	9,530	7,930	2,550	120	580	1,640	1,710	1,340	1,140	460
West North Central	35,630	29,010	11,440	500	1,460	5,180	6,010	4,430	4,810	1,820
lowa	4,890	4,040	1,600	140	400	570	600	730	610	230
Kansas	4,250	3,310	1,290	50	100	400	960	500	690	260
Minnesota	11,800	9,300	3,360	170	310	2,030	2,240	1,180	1,810	700
Missouri	9,300	7,630	3,160	S	410	1,520	1,290	1,200	1,230	440
Nebraska	1,380	1,120	540	S	S	170	230	120	120	140
North Dakota	2,970	2,660	1,090	S	130	430	480	500	260	60
South Dakota	1,050	950	390	S	80	60	200	200	80	S
South Atlantic	119,860	97,650	31,500	2,110	6,570	20,600	18,390	18,490	16,430	5,780
Delaware	3,110	2,410	770	S	140	970	300	200	590	110
District of Columbia	13,330	11,600	1,850	90	290	1,580	1,920	5,880	1,300	430
Florida	17,630	13,700	4,110	490	980	2,080	3,700	2,340	2,990	940
Georgia	12,970	10,740	3,620	220	510	2,280	2,120	1,990	1,550	680
Maryland	26,160	21,250	9,290	370	1,520	4,880	2,960	2,230	3,240	1,670
North Carolina	18,910	15,800	6,330	260	1,000	3,110	3,060	2,040	2,060	1,050
South Carolina	5,910	4,750	1,490	80	270	1,170	1,000	740	870	290
Virginia	19,850	15,850	3,370	580	1,770	4,230	3,060	2,840	3,490	500
West Virginia	2,000	1,540	660	S	90	290	260	230	340	110
East South Central	24,150	18,600	6,590	420	1,220	3,890	3,710	2,770	4,100	1,460
Alabama	5,900	4,190	1,480	120	380	950	780	480	1,250	460
Kentucky	4,960	4,220	1,630	60	450	490	810	790	500	240
Mississippi	3,310	2,430	1,170	130	130	470	220	310	650	230
Tennessee	9,980	7,760	2,320	110	270	1,970	1,900	1,190	1,690	530
West South Central	48,740	36,480	12,690	1,120	2,060	8,460	6,760	5,400	9,980	2,280
Arkansas	2,840	2,380	1,080	S	120	410	270	480	310	150
Louisiana	5,480	4,430	1,870	140	220	740	830	640	660	380
Oklahoma	4,420	3,660	1,090	140	180	820	880	550	590	170
Texas	36,000	26,000	8,660	810	1,540	6,500	4,780	3,720	8,420	1,570
Mountain	43,570	33,270	10,030	620	1,990	9,540	6,070	5,030	8,910	1,380
Arizona	8,410	6,210	1,640	S	210	1,550	1,340	1,420	1,880	320
Colorado	13,150	10,810	3,110	250	610	3,350	2,170	1,320	1,920	420

TABLE 16. Employed doctoral scientists and engineers, by employer location and broad field of doctorate: 2006

Employer location	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Idaho	2,840	2,060	810	S	110	390	510	210	680	100
Montana	1,990	1,710	700	S	180	340	320	140	210	80
New Mexico	8,300	5,530	1,150	100	280	2,770	500	730	2,590	190
Nevada	2,620	2,120	810	S	230	410	340	280	430	70
Utah	5,520	4,170	1,530	110	300	610	750	880	1,150	210
Wyoming	730	660	260	S	50	120	150	60	70	S
Pacific	116,510	88,600	28,380	3,750	4,400	23,440	16,470	12,160	24,690	3,220
Alaska	1,110	1,010	450	S	S	220	60	220	100	S
California	87,370	65,060	19,590	3,060	3,500	18,450	12,340	8,130	20,160	2,150
Hawaii	2,850	2,620	890	S	150	500	430	620	180	S
Oregon	8,270	6,230	2,320	230	260	1,370	1,190	870	1,750	280
Washington	16,920	13,670	5,130	390	460	2,920	2,460	2,320	2,510	750
Puerto Rico	1,690	1,510	530	S	70	310	480	120	90	80
Other U.S. territories and other areas	1,490	1,150	260	S	140	320	210	210	300	S
	Percent									
All locations	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
New England	8.4	8.5	8.9	7.6	7.1	8.2	8.9	8.6	7.8	8.4
Connecticut	1.7	1.7	1.6	0.9	0.7	2.0	2.2	1.3	1.4	2.1
Maine	0.4	0.4	0.4	S	S	0.3	0.5	0.6	0.2	0.5
Massachusetts	5.2	5.3	6.2	5.2	5.2	4.9	4.8	5.0	4.8	4.5
New Hampshire	0.4	0.4	0.2	0.4	0.6	0.5	0.4	0.4	0.6	0.3
Rhode Island	0.5	0.5	0.2	0.7	0.5	0.4	0.6	0.7	0.6	0.6
Vermont	0.3	0.3	0.3	S	S	0.1	0.3	0.5	0.3	0.3
Middle Atlantic	15.4	15.8	13.9	19.8	17.2	15.8	17.2	16.9	13.0	17.1
New Jersey	3.3	3.4	2.8	5.6	4.9	4.7	2.6	2.7	3.1	4.0
New York	7.4	7.7	6.6	11.2	8.2	6.4	9.4	9.1	5.9	6.8
Pennsylvania	4.7	4.7	4.6	3.0	4.2	4.7	5.1	5.1	4.1	6.2
East North Central	13.2	13.0	12.2	9.9	14.3	12.7	13.8	13.9	14.1	13.3
Illinois	3.9	3.9	3.4	4.6	3.6	3.8	3.7	4.9	3.8	4.1
Indiana	1.6	1.6	1.5	1.1	2.1	1.5	1.5	1.9	1.5	1.7
Michigan	2.9	2.7	2.5	1.4	3.6	2.6	3.2	2.4	4.1	1.9
Ohio	3.3	3.2	3.1	1.9	3.0	3.3	3.6	3.1	3.6	3.9
Wisconsin	1.5	1.6	1.6	0.9	2.0	1.4	1.8	1.7	1.1	1.8
West North Central	5.7	5.9	7.3	3.7	5.0	4.6	6.2	5.5	4.5	6.9
lowa	0.8	0.8	1.0	1.0	1.4	0.5	0.6	0.9	0.6	0.9
Kansas	0.7	0.7	0.8	0.4	0.3	0.4	1.0	0.6	0.6	1.0
Minnesota	1.9	1.9	2.2	1.2	1.1	1.8	2.3	1.5	1.7	2.6
Missouri	1.5	1.6	2.0	S	1.4	1.3	1.3	1.5	1.2	1.7
Nebraska	0.2	0.2	0.3	S	S	0.1	0.2	0.2	0.1	0.5
North Dakota	0.5	0.5	0.7	S	0.5	0.4	0.5	0.6	0.2	0.2
South Dakota	0.2	0.2	0.3	S	0.3	S	0.2	0.2	0.1	S
South Atlantic	19.3	20.0	20.2	15.6	22.5	18.2	19.0	23.1	15.4	22.0
Delaware	0.5	0.5	0.5	S	0.5	0.9	0.3	0.2	0.6	0.4
District of Columbia	2.1	2.4	1.2	0.7	1.0	1.4	2.0	7.3	1.2	1.6
Florida	2.8	2.8	2.6	3.6	3.4	1.8	3.8	2.9	2.8	3.6
Georgia	2.1	2.2	2.3	1.6	1.8	2.0	2.2	2.5	1.5	2.6
Maryland	4.2	4.3	6.0	2.7	5.2	4.3	3.1	2.8	3.0	6.3
North Carolina	3.0	3.2	4.1	1.9	3.4	2.7	3.2	2.5	1.9	4.0

TABLE 16. Employed doctoral scientists and engineers, by employer location and broad field of doctorate: 2006

Employer location	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Science							Engineering	Health
		All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
South Carolina	1.0	1.0	1.0	0.6	0.9	1.0	1.0	0.9	0.8	1.1
Virginia	3.2	3.2	2.2	4.2	6.1	3.7	3.2	3.5	3.3	1.9
West Virginia	0.3	0.3	0.4	S	0.3	0.3	0.3	0.3	0.3	0.4
East South Central	3.9	3.8	4.2	3.1	4.2	3.4	3.8	3.4	3.8	5.5
Alabama	0.9	0.9	0.9	0.9	1.3	0.8	0.8	0.6	1.2	1.7
Kentucky	0.8	0.9	1.0	0.4	1.5	0.4	0.8	1.0	0.5	0.9
Mississippi	0.5	0.5	0.7	1.0	0.4	0.4	0.2	0.4	0.6	0.9
Tennessee	1.6	1.6	1.5	0.8	0.9	1.7	2.0	1.5	1.6	2.0
West South Central	7.8	7.5	8.1	8.2	7.1	7.5	7.0	6.7	9.4	8.7
Arkansas	0.5	0.5	0.7	S	0.4	0.4	0.3	0.6	0.3	0.6
Louisiana	0.9	0.9	1.2	1.0	0.8	0.7	0.9	0.8	0.6	1.5
Oklahoma	0.7	0.7	0.7	1.1	0.6	0.7	0.9	0.7	0.6	0.7
Texas	5.8	5.3	5.5	6.0	5.3	5.7	5.0	4.6	7.9	6.0
Mountain	7.0	6.8	6.4	4.6	6.8	8.4	6.3	6.3	8.4	5.3
Arizona	1.4	1.3	1.1	S	0.7	1.4	1.4	1.8	1.8	1.2
Colorado	2.1	2.2	2.0	1.8	2.1	3.0	2.2	1.6	1.8	1.6
Idaho	0.5	0.4	0.5	S	0.4	0.3	0.5	0.3	0.6	0.4
Montana	0.3	0.3	0.5	S	0.6	0.3	0.3	0.2	0.2	0.3
New Mexico	1.3	1.1	0.7	0.8	1.0	2.4	0.5	0.9	2.4	0.7
Nevada	0.4	0.4	0.5	S	0.8	0.4	0.4	0.3	0.4	0.3
Utah	0.9	0.9	1.0	0.8	1.0	0.5	0.8	1.1	1.1	0.8
Wyoming	0.1	0.1	0.2	S	0.2	0.1	0.2	0.1	0.1	S
Pacific	18.7	18.1	18.2	27.6	15.1	20.7	17.1	15.2	23.2	12.3
Alaska	0.2	0.2	0.3	S	S	0.2	0.1	0.3	0.1	S
California	14.1	13.3	12.6	22.5	12.0	16.3	12.8	10.1	18.9	8.2
Hawaii	0.5	0.5	0.6	S	0.5	0.4	0.4	0.8	0.2	S
Oregon	1.3	1.3	1.5	1.7	0.9	1.2	1.2	1.1	1.6	1.1
Washington	2.7	2.8	3.3	2.8	1.6	2.6	2.5	2.9	2.4	2.8
Puerto Rico	0.3	0.3	0.3	S	0.3	0.3	0.5	0.1	0.1	0.3
Other U.S. territories and other areas	0.2	0.2	0.2	S	0.5	0.3	0.2	0.3	0.3	S

NOTES: Because survey sample design does not include geography, the reliability of estimates in some states may be poor due to small sample size. Numbers are rounded to nearest 10. Detail may not add to total because of rounding.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 17. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, and faculty rank: 2006

Field and sex	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{array}{r} \text { Full } \\ \text { professor } \end{array}$	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
All fields	271,540	90,530	57,500	58,890	11,140	1,260	52,230
Male	(67.4)	(80.9)	(65.8)	(57.0)	(48.6)	(72.3)	(61.2)
Female	(32.6)	(19.1)	(34.2)	(43.0)	(51.4)	(27.7)	(38.8)
Science	226,400	75,280	47,490	47,600	9,970	980	45,070
Male	(66.7)	(80.7)	(65.1)	(56.8)	(48.5)	(71.8)	(59.6)
Female	(33.3)	(19.3)	(34.9)	(43.2)	(51.5)	(28.2)	(40.4)
Biological, agricultural, and environmental life sciences	79,810	23,040	15,110	16,040	3,220	420	21,980
Male	(65.9)	(79.5)	(70.1)	(60.0)	(40.8)	(61.6)	(56.6)
Female	(34.1)	(20.5)	(29.9)	(40.0)	(59.2)	(38.4)	(43.4)
Computer and information sciences	5,790	1,570	1,660	1,730	230	S	560
Male	(78.3)	(82.3)	(78.7)	(73.8)	(85.6)	S	(77.9)
Female	(21.7)	(17.7)	(21.3)	(26.2)	S	S	(22.1)
Mathematics and statistics	17,290	7,330	4,090	3,440	700	60	1,670
Male	(81.0)	(91.4)	(79.4)	68.1	(60.0)	S	(75.7)
Female	(19.0)	(8.6)	(20.6)	31.9	(40.0)	S	(24.3)
Physical sciences	38,760	13,760	7,010	6,820	1,550	120	9,490
Male	(82.0)	(92.1)	(75.8)	(73.5)	(81.8)	(79.9)	(78.1)
Female	(18.0)	(7.9)	(24.2)	(26.5)	(18.2)	S	(21.9)
Psychology	34,640	10,480	6,960	8,520	1,930	150	6,600
Male	(46.1)	(66.4)	(40.0)	(36.3)	(26.4)	(65.3)	(38.5)
Female	(53.9)	(33.6)	(60.0)	(63.7)	(73.6)	(34.7)	(61.5)
Social sciences	50,110	19,090	12,660	11,060	2,340	200	4,760
Male	(64.3)	(77.4)	(60.7)	(51.4)	(47.8)	(100.0)	(58.1)
Female	(35.7)	(22.6)	(39.3)	(48.6)	(52.2)	S	(41.9)
Engineering	30,230	11,470	5,920	6,510	660	180	5,480
Male	(87.9)	(95.1)	(89.0)	(79.7)	(81.3)	(100.0)	(81.7)
Female	(12.1)	(4.9)	(11.0)	(20.3)	(18.7)	S	(18.3)
Health	14,920	3,780	4,080	4,780	510	90	1,680
Male	(35.2)	(41.8)	(39.5)	(28.9)	(10.0)	S	(35.8)
Female	(64.8)	(58.2)	(60.5)	(71.1)	(90.0)	(78.7)	(64.2)

S = suppressed for reliability or confidentiality.
NOTES: Percentage distribution is shown in parentheses. Numbers are rounded to nearest 10. Detail may not add to total because of rounding. 4 -year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 18. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, faculty rank, and years since doctorate: 2006

	All employed		Full professor		Associate professor		Assistant professor		Instructor/lecturer		All other faculty		Rank not applicable	
Field and sex	$\begin{gathered} \text { Less } \\ \text { than } 10 \end{gathered}$	$\overline{10 \mathrm{or}}$ more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	10 or more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	10 or more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$10 \text { or }$ more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$10 \text { or }$ more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	10 or more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$10 \mathrm{or}$ more
All fields	99,660	171,890	1,830	88,700	13,130	44,370	43,720	15,170	5,510	5,630	270	990	35,200	17,030
Male	(57.4)	(73.2)	(64.3)	(81.2)	(59.3)	(67.7)	(57.1)	(56.8)	(43.7)	(53.5)	(53.5)	(77.4)	(58.7)	(66.3)
Female	(42.6)	(26.8)	(35.7)	(18.8)	(40.7)	(32.3)	(42.9)	(43.2)	(56.3)	(46.5)	(46.5)	(22.6)	(41.3)	(33.7)
Science	80,820	145,570	1,230	74,050	9,920	37,570	34,720	12,880	4,920	5,050	190	790	29,850	15,230
Male	(56.7)	(72.3)	(67.7)	(80.9)	(60.2)	(66.4)	(57.1)	(55.8)	(43.9)	(52.9)	(58.9)	(75.0)	(56.6)	(65.6)
Female	(43.3)	(27.7)	(32.3)	(19.1)	(39.8)	(33.6)	(42.9)	(44.2)	(56.1)	(47.1)	(41.1)	(25.0)	(43.4)	(34.4)
Biological, agricultural, and														
environmental life sciences	29,290	50,520	210	22,830	1,830	13,270	9,080	6,950	1,680	1,550	120	300	16,360	5,620
Male	(57.2)	(70.9)	(38.8)	(79.9)	(67.2)	(70.5)	(62.8)	(56.3)	(40.0)	(41.8)	(53.6)	(64.8)	(55.0)	(61.3)
Female	(42.8)	(29.1)	(61.2)	(20.1)	(32.8)	(29.5)	(37.2)	(43.7)	(60.0)	(58.2)	(46.4)	(35.2)	(45.0)	(38.7)
Computer and information sciences	3,020	2,770	190	1,380	610	1,050	1,620	110	140	100	S	S	430	140
Male	(75.8)	(81.1)	(74.5)	(83.3)	(74.0)	(81.5)	(74.5)	(62.3)	(91.5)	(77.3)	S	S	(79.4)	(73.1)
Female	(24.2)	(18.9)	S	(16.7)	(26.0)	(18.5)	(25.5)	S	S	S	S	S	(20.6)	S
Mathematics and statistics	5,340	11,950	S	7,310	1,150	2,950	2,860	580	200	490	S	60	1,100	570
Male	(71.1)	(85.4)	S	(91.4)	77.3	(80.3)	(66.4)	(76.4)	(73.3)	(54.6)	S	S	(76.1)	(75.0)
Female	(28.9)	(14.6)	S	(8.6)	22.7	(19.7)	(33.6)	(23.6)	(26.7)	(45.4)	S	S	(23.9)	(25.0)
Physical sciences	13,150	25,610	150	13,610	1,280	5,730	5,130	1,690	700	850	S	100	5,860	3,630
Male	(73.5)	(86.4)	(84.8)	(92.2)	(69.0)	(77.4)	(73.4)	(73.8)	(77.5)	(85.4)	S	(74.8)	(73.7)	(85.2)
Female	(26.5)	(13.6)	S	(7.8)	(31.0)	(22.6)	(26.6)	(26.2)	(22.5)	(14.6)	S	S	(26.3)	(14.8)
Psychology	13,450	21,190	220	10,260	1,640	5,320	6,600	1,920	1,030	890	S	140	3,950	2,660
Male	(33.9)	(53.9)	(58.5)	(66.6)	(31.3)	(42.7)	(36.4)	(35.8)	(17.1)	(37.2)	S	(70.4)	(34.1)	(44.9)
Female	(66.1)	(46.1)	(41.5)	(33.4)	(68.7)	(57.3)	(63.6)	(64.2)	(82.9)	(62.8)	S	S	(65.9)	(55.1)
Social sciences	16,580	33,530	430	18,660	3,400	9,260	9,420	1,630	1,180	1,170	S	200	2,140	2,620
Male	(52.5)	(70.1)	(75.4)	(77.5)	(58.7)	(61.4)	(51.4)	(51.0)	(42.5)	(53.2)	S	(100.0)	(48.6)	(65.9)
Female	(47.5)	(29.9)	(24.6)	(22.5)	(41.3)	(38.6)	(48.6)	(49.0)	(57.5)	(46.8)	S	S	(51.4)	(34.1)
Engineering	11,570	18,660	320	11,150	1,580	4,340	5,180	1,340	300	360	S	150	4,160	1,320
Male	(80.3)	(92.6)	(97.8)	(95.0)	(82.3)	(91.5)	(78.8)	(83.2)	(73.3)	(88.2)	S	(100.0)	(80.4)	(86.0)
Female	(19.7)	(7.4)	S	(5.0)	(17.7)	(8.5)	(21.2)	(16.8)	(26.7)	S	S	S	(19.6)	(14.0)
Health	7,260	7,650	280	3,490	1,630	2,460	3,830	950	280	230	S	S	1,200	480
Male	(28.7)	(41.3)	S	(44.3)	(31.4)	(44.9)	(28.1)	(32.4)	S	S	S	S	(36.8)	(33.4)
Female	(71.3)	(58.7)	(88.1)	(55.7)	(68.6)	(55.1)	(71.9)	(67.6)	(91.4)	(88.3)	S	S	(63.2)	(66.6)

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Percentage distribution is shown in parentheses. Numbers are rounded to nearest 10 . Detail may not add to total because of rounding. 4 -year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 19. Employed doctoral scientists and engineers in 4 -year educational institutions, by broad field of doctorate, race/ethnicity, and faculty rank: 2006

Field and race/ethnicity	All employed		Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
All fields	271,540	90,530	57,500	58,890	11,140	1,260	52,230
American Indian/Alaska Native	(0.7)	(0.9)	(0.6)	(0.6)	(0.9)	S	(0.5)
Asian	(14.1)	(9.1)	(11.0)	(16.3)	(12.6)	(7.0)	(24.1)
Black	(3.8)	(2.5)	(4.5)	(5.4)	(4.1)	(4.3)	(3.4)
Hispanic	(3.4)	(3.0)	(3.5)	(3.8)	(3.6)	S	(3.8)
White	(77.8)	(84.4)	(80.4)	(73.6)	(78.8)	(84.2)	(67.9)
Other race/ethnicity ${ }^{\text {a }}$	(0.2)	(0.1)	S	(0.2)	S	S	(0.3)
Science	226,400	75,280	47,490	47,600	9,970	980	45,070
American Indian/Alaska Native	(0.7)	(0.9)	(0.6)	(0.7)	(1.0)	S	(0.5)
Asian	(12.8)	(7.5)	(10.7)	(15.3)	(12.0)	(9.0)	(21.8)
Black	(3.7)	(2.4)	(4.3)	(5.1)	(4.0)	(5.5)	(3.6)
Hispanic	(3.5)	(3.1)	(3.6)	(3.7)	(3.8)	S	(3.8)
White	(79.1)	(86.1)	(80.8)	(74.9)	(79.2)	(80.3)	(70.1)
Other race/ethnicity ${ }^{\text {a }}$	(0.2)	(0.1)	S	(0.3)	S	S	(0.3)
Biological, agricultural, and environmental life sciences	79,810	23,040	15,110	16,040	3,220	420	21,980
American Indian/Alaska Native	(0.6)	(0.9)	(1.0)	(0.6)	S	S	(0.2)
Asian	(16.3)	(6.0)	(13.0)	(18.8)	(18.0)	S	(27.5)
Black	(2.7)	(2.0)	(2.0)	(4.3)	(1.9)	S	(3.0)
Hispanic	(3.3)	(2.5)	(3.6)	(3.0)	(3.0)	S	(4.1)
White	(76.9)	(88.5)	(80.3)	(73.2)	(76.7)	(87.5)	(65.0)
Other race/ethnicity ${ }^{\text {a }}$	(0.1)	S	S	S	S	S	S
Computer and information sciences	5,790	1,570	1,660	1,730	230	S	560
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	(30.5)	(32.5)	(20.3)	(42.0)	S	S	(27.0)
Black	(3.1)	S	(5.7)	(3.3)	S	S	S
Hispanic	(2.8)	(4.4)	S	(3.1)	S	S	S
White	(63.7)	(61.5)	(72.4)	(51.5)	(84.4)	S	(72.6)
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Mathematics and statistics	17,290	7,330	4,090	3,440	700	60	1,670
American Indian/Alaska Native	(0.5)	(0.7)	S	S	S	S	S
Asian	(18.2)	(14.4)	(22.2)	(19.3)	(10.0)	S	(26.4)
Black	(2.4)	(1.4)	(2.9)	(3.6)	S	S	S
Hispanic	(3.4)	(4.0)	(4.2)	(1.8)	S	S	(3.6)
White	(75.5)	(79.4)	(70.4)	(75.3)	(84.8)	(92.3)	(66.8)
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Physical sciences	38,760	13,760	7,010	6,820	1,550	120	9,490
American Indian/Alaska Native	(0.5)	(0.5)	S	S	S	S	(0.9)
Asian	(14.9)	(10.3)	(9.6)	(15.4)	(15.9)	S	(24.9)
Black	(2.1)	(1.0)	(2.5)	(3.4)	(7.8)	S	(1.6)
Hispanic	(3.1)	(3.7)	(3.1)	(2.5)	(3.3)	S	(2.2)
White	(79.1)	(84.2)	(84.5)	(78.6)	(71.5)	(42.0)	(69.9)
Other race/ethnicity ${ }^{\text {a }}$	(0.2)	S	S	S	S	S	S
Psychology	34,640	10,480	6,960	8,520	1,930	150	6,600
American Indian/Alaska Native	(0.8)	(1.2)	(0.8)	(0.6)	S	S	S
Asian	(3.9)	(1.3)	(3.2)	(6.4)	(4.4)	S	(5.7)
Black	(5.5)	(3.4)	(7.5)	(5.7)	(4.8)	S	(6.5)
Hispanic	(4.0)	(2.6)	(4.0)	(5.0)	(6.0)	S	(4.7)
White	(85.2)	(91.2)	(84.4)	(81.4)	(83.4)	(83.0)	(82.2)
Other race/ethnicity ${ }^{\text {a }}$	(0.5)	S	S	(0.9)	S	S	S
Social sciences	50,110	19,090	12,660	11,060	2,340	200	4,760
American Indian/Alaska Native	(1.0)	(1.0)	(0.4)	(1.8)	S	S	S
Asian	(8.0)	(5.8)	(7.7)	(11.7)	(8.1)	S	(8.7)
Black	(5.7)	(3.7)	(6.4)	(7.6)	(3.9)	S	(7.5)

TABLE 19. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and faculty rank: 2006

Field and race/ethnicity	All employed	Full professor	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
Hispanic	(4.0)	(3.1)	(3.8)	(5.2)	(4.2)	S	(5.0)
White	(81.3)	(86.2)	(81.6)	(73.5)	(82.0)	(85.3)	(78.2)
Other race/ethnicity ${ }^{\text {a }}$	(0.1)	S	S	S	S	S	S
Engineering	30,230	11,470	5,920	6,510	660	180	5,480
American Indian/Alaska Native	(0.4)	(0.7)	S	S	S	S	S
Asian	(26.3)	(21.7)	(18.5)	(28.1)	(18.6)	S	(44.0)
Black	(3.5)	(3.3)	(3.0)	(6.3)	S	S	(1.2)
Hispanic	(3.1)	(2.7)	(3.2)	(4.0)	S	S	(3.4)
White	(66.6)	(71.6)	(75.2)	(61.6)	(76.3)	(97.3)	(50.6)
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Health	14,920	3,780	4,080	4,780	510	90	1,680
American Indian/Alaska Native	(1.0)	(2.0)	S	S	S	S	S
Asian	(8.3)	(3.5)	(3.7)	(10.3)	(15.2)	S	(22.7)
Black	(6.6)	(3.4)	(9.4)	(7.4)	S	S	(6.1)
Hispanic	(3.1)	(1.7)	(2.5)	(4.2)	S	S	(3.9)
White	(81.0)	(89.4)	(83.5)	(77.6)	(74.6)	(100.0)	(66.6)
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{a}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Percentage distribution is shown in parentheses. Numbers are rounded to nearest 10. Detail may not add to total because of rounding. 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 20. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, and tenure status: 2006

Field and sex	All employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
All fields	271,540	127,640	47,330	29,340	67,230
Male	(67.4)	(76.2)	(61.5)	(57.3)	(59.1)
Female	(32.6)	(23.8)	(38.5)	(42.7)	(40.9)
Science	226,400	106,070	37,710	25,080	57,540
Male	(66.7)	(75.6)	(62.0)	(57.3)	(57.7)
Female	(33.3)	(24.4)	(38.0)	(42.7)	(42.3)
Biological, agricultural, and environmental life sciences	79,810	31,050	12,050	10,540	26,170
Male	(65.9)	(77.8)	(66.3)	(55.6)	(55.6)
Female	(34.1)	(22.2)	(33.7)	(44.4)	(44.4)
Computer and information sciences	5,790	2,860	1,760	430	740
Male	(78.3)	(79.4)	(77.4)	(74.2)	(78.6)
Female	(21.7)	(20.6)	(22.6)	(25.8)	(21.4)
Mathematics and statistics	17,290	10,800	3,270	1,130	2,090
Male	(81.0)	(86.4)	(70.6)	(68.1)	(76.6)
Female	(19.0)	(13.6)	(29.4)	(31.9)	(23.4)
Physical sciences	38,760	18,210	5,890	3,790	10,870
Male	(82.0)	(86.3)	(74.3)	(81.5)	(79.1)
Female	(18.0)	(13.7)	(25.7)	(18.5)	(20.9)
Psychology	34,640	14,130	5,530	4,660	10,320
Male	(46.1)	(57.4)	(42.8)	(37.5)	(36.4)
Female	(53.9)	(42.6)	(57.2)	(62.5)	(63.6)
Social sciences	50,110	29,030	9,220	4,520	7,340
Male	(64.3)	(70.8)	(53.9)	(56.8)	(56.4)
Female	(35.7)	(29.2)	(46.1)	(43.2)	(43.6)
Engineering	30,230	15,640	5,650	2,240	6,700
Male	(87.9)	(92.8)	(80.9)	(88.9)	(82.1)
Female	(12.1)	(7.2)	(19.1)	(11.1)	(17.9)
Health	14,920	5,930	3,970	2,020	2,990
Male	(35.2)	(43.4)	(29.6)	(23.1)	(34.5)
Female	(64.8)	(56.6)	(70.4)	(76.9)	(65.5)

NOTES: Percentage distribution is shown in parentheses. Numbers are rounded to nearest 10. Detail may not add to total because of rounding. 4 -year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 21. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, tenure status, and years since doctorate: 2006

Field and sex	All employed		Tenured		Not tenured				Tenure not applicable			
			On tenure track	Not on tenure track								
	$\begin{gathered} \text { Less } \\ \text { than } 10 \end{gathered}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$			$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{gathered} \text { Less } \\ \text { than } 10 \end{gathered}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$
All fields	99,660	171,890	11,760	115,880	36,030	11,300	12,730	16,610	39,130	28,100		
Male	(57.4)	(73.2)	(59.8)	(77.8)	(60.4)	(64.9)	(49.5)	(63.4)	(56.3)	(63.0)		
Female	(42.6)	(26.8)	(40.2)	(22.2)	(39.6)	(35.1)	(50.5)	(36.6)	(43.7)	(37.0)		
Science	80,820	145,570	8,640	97,430	28,440	9,270	10,640	14,440	33,110	24,430		
Male	(56.7)	(72.3)	(60.0)	(76.9)	(61.2)	(64.4)	(49.0)	(63.3)	(54.3)	(62.4)		
Female	(43.3)	(27.7)	(40.0)	(23.1)	(38.8)	(35.6)	(51.0)	(36.7)	(45.7)	(37.6)		
Biological, agricultural, and environmental life sciences	29,290	50,520	1,470	29,580	6,920	5,130	3,950	6,590	16,960	9,220		
Male	(57.2)	(70.9)	(66.1)	(78.4)	(68.1)	(64.0)	(46.2)	(61.3)	(54.6)	(57.4)		
Female	(42.8)	(29.1)	(33.9)	(21.6)	(31.9)	(36.0)	(53.8)	(38.7)	(45.4)	(42.6)		
Computer and information sciences	3,020	2,770	680	2,180	1,540	220	350	80	450	290		
Male	(75.8)	(81.1)	(72.3)	(81.7)	(75.0)	(94.7)	(69.9)	(92.7)	(88.4)	(63.4)		
Female	(24.2)	(18.9)	(27.7)	(18.3)	(25.0)	S	(30.1)	S	(11.6)	(36.6)		
Mathematics and statistics	5,340	11,950	880	9,920	2,750	520	390	730	1,310	780		
Male	(71.1)	(85.4)	(68.7)	(88.0)	(68.2)	(83.2)	(87.4)	(57.7)	(74.0)	(80.8)		
Female	(28.9)	(14.6)	(31.3)	(12.0)	31.8	(16.8)	S	(42.3)	(26.0)	(19.2)		
Physical sciences	13,150	25,610	1,110	17,100	4,530	1,360	1,350	2,440	6,160	4,710		
Male	(73.5)	(86.4)	(74.8)	(87.1)	(72.7)	(79.8)	(82.5)	(80.9)	(71.9)	(88.5)		
Female	(26.5)	(13.6)	(25.2)	(12.9)	(27.3)	(20.2)	(17.5)	(19.1)	(28.1)	(11.5)		
Psychology	13,450	21,190	1,320	12,810	4,560	970	2,350	2,320	5,230	5,090		
Male	(33.9)	(53.9)	(33.2)	(59.9)	(43.1)	(41.2)	(25.2)	(50.0)	(30.0)	(42.9)		
Female	(66.1)	(46.1)	(66.8)	(40.1)	(56.9)	(58.8)	(74.8)	(50.0)	(70.0)	(57.1)		
Social sciences	16,580	33,530	3,180	25,850	8,150	1,070	2,250	2,280	3,000	4,340		
Male	(52.5)	(70.1)	(58.1)	(72.3)	(54.0)	(53.1)	(48.8)	(64.7)	(45.4)	(64.0)		
Female	(47.5)	(29.9)	(41.9)	(27.7)	(46.0)	(46.9)	(51.2)	(35.3)	(54.6)	(36.0)		
Engineering	11,570	18,660	1,680	13,960	4,360	1,290	1,100	1,140	4,430	2,270		
Male	(80.3)	(92.6)	(81.6)	(94.1)	(78.8)	(87.9)	(86.7)	(91.0)	(79.6)	(86.9)		
Female	(19.7)	(7.4)	(18.4)	(5.9)	(21.2)	(12.1)	(13.3)	(9.0)	(20.4)	(13.1)		
Health	7,260	7,650	1,450	4,480	3,230	740	990	1,030	1,590	1,400		
Male	(28.7)	(41.3)	(33.7)	(46.5)	(29.2)	(31.3)	(12.5)	(33.4)	(33.1)	(36.1)		
Female	(71.3)	(58.7)	(66.3)	(53.5)	(70.8)	(68.7)	(87.5)	(66.6)	(66.9)	(63.9)		

S = suppressed for reliability or confidentiality.
NOTES: Percentage distribution is shown in parentheses. Numbers are rounded to nearest 10 . Detail may not add to total because of rounding. 4 -year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 22. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and tenure status: 2006

Field and race/ethnicity	All employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
All fields	271,540	127,640	47,330	29,340	67,230
American Indian/Alaska Native	(0.7)	(0.8)	(0.6)	(0.4)	(0.6)
Asian	(14.1)	(9.6)	(16.6)	(13.6)	(21.0)
Black	(3.8)	(3.3)	(5.6)	(3.6)	(3.7)
Hispanic	(3.4)	(3.1)	(4.1)	(3.5)	(3.6)
White	(77.8)	(83.0)	(72.9)	(78.8)	(70.9)
Other race/ethnicity ${ }^{\text {a }}$	(0.2)	(0.1)	(0.3)	S	(0.2)
Science	226,400	106,070	37,710	25,080	57,540
American Indian/Alaska Native	(0.7)	(0.8)	(0.8)	(0.3)	(0.6)
Asian	(12.8)	(8.5)	(15.5)	(13.2)	(18.9)
Black	(3.7)	(3.1)	(5.3)	(3.4)	(3.8)
Hispanic	(3.5)	(3.2)	(4.1)	(3.5)	(3.7)
White	(79.1)	(84.3)	(73.9)	(79.5)	(72.7)
Other race/ethnicity ${ }^{\text {a }}$	(0.2)	(0.1)	(0.3)	S	(0.2)
Biological, agricultural, and environmental life sciences	79,810	31,050	12,050	10,540	26,170
American Indian/Alaska Native	(0.6)	(1.0)	(0.6)	S	(0.5)
Asian	(16.3)	(8.3)	(17.1)	(17.7)	(25.0)
Black	(2.7)	(1.9)	(3.7)	(2.9)	(3.1)
Hispanic	(3.3)	(2.8)	(3.2)	(3.1)	(3.9)
White	(76.9)	(85.9)	(75.2)	(76.3)	(67.3)
Other race/ethnicity ${ }^{\text {a }}$	(0.1)	S	S	S	S
Computer and information sciences	5,790	2,860	1,760	430	740
American Indian/Alaska Native	S	S	S	S	S
Asian	(30.5)	(28.6)	(39.4)	(20.5)	(22.4)
Black	(3.1)	(3.8)	(3.0)	S	S
Hispanic	(2.8)	(3.0)	(3.8)	S	S
White	(63.7)	(64.7)	(53.9)	(78.5)	(74.5)
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Mathematics and statistics	17,290	10,800	3,270	1,130	2,090
American Indian/Alaska Native	(0.5)	(0.5)	S	S	S
Asian	(18.2)	(15.5)	(23.1)	(18.2)	(24.1)
Black	(2.4)	(2.0)	(3.7)	S	S
Hispanic	(3.4)	(3.8)	(2.9)	S	(3.0)
White	(75.5)	(78.1)	(70.3)	(76.9)	(69.4)
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Physical sciences	38,760	18,210	5,890	3,790	10,870
American Indian/Alaska Native	(0.5)	(0.4)	S	S	(0.7)
Asian	(14.9)	(10.0)	(14.6)	(16.1)	(23.0)
Black	(2.1)	(1.4)	(4.0)	(3.5)	(1.9)
Hispanic	(3.1)	(3.8)	(2.5)	(3.8)	(1.8)
White	(79.1)	(84.2)	(78.1)	(75.6)	(72.4)
Other race/ethnicity ${ }^{\text {a }}$	(0.2)	S	S	S	S
Psychology	34,640	14,130	5,530	4,660	10,320
American Indian/Alaska Native	(0.8)	(1.1)	(1.0)	S	(0.6)
Asian	(3.9)	(1.9)	(8.0)	(3.9)	(4.6)
Black	(5.5)	(5.1)	(6.4)	(4.6)	(5.9)
Hispanic	(4.0)	(2.4$)$	(5.8)	(4.3)	(5.2)
White	(85.2)	(89.2)	(77.4)	(86.7)	(83.4)
Other race/ethnicity ${ }^{\text {a }}$	(0.5)	S	(1.3)	S	S
Social sciences	50,110	29,030	9,220	4,520	7,340
American Indian/Alaska Native	(1.0)	(1.0)	(1.4)	S	(0.8)

TABLE 22. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and tenure status: 2006

Field and race/ethnicity	All employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
Asian	(8.0)	(6.4)	(11.4)	(7.9)	(9.8)
Black	(5.7)	(4.7)	(8.5)	(3.6)	(7.1)
Hispanic	(4.0)	(3.4)	(5.8)	(3.7)	(4.0)
White	(81.3)	(84.4)	(72.7)	(83.8)	(78.2)
Other race/ethnicity ${ }^{\text {a }}$	(0.1)	S	S	S	S
Engineering	30,230	15,640	5,650	2,240	6,700
American Indian/Alaska Native	(0.4)	(0.5)	S	S	S
Asian	(26.3)	(19.9)	(28.4)	(22.4)	(40.6)
Black	(3.5)	(3.5)	(6.8)	(3.0)	(1.1)
Hispanic	(3.1)	(3.0)	(3.8)	(3.8)	(2.7)
White	(66.6)	(73.1)	(60.9)	(69.9)	(55.1)
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Health	14,920	5,930	3,970	2,020	2,990
American Indian/Alaska Native	(1.0)	(1.8)	S	S	S
Asian	(8.3)	(2.8)	(9.2)	(8.2)	(18.0)
Black	(6.6)	(6.9)	(6.4)	(6.5)	(6.4)
Hispanic	(3.1)	(1.9)	(4.1)	(4.2)	(3.4)
White	(81.0)	(86.6)	(80.0)	(80.0)	(71.8)
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Percentage distribution is shown in parentheses. Numbers are rounded to nearest 10 . Detail may not add to total because of rounding. 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and universityaffiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 23. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, primary work activity, and secondary work activity: 2006

Field and primary work activity	All employed	Secondary work activity (\%)						
		All activities	Computer applications	Management, sales, administration	$\mathrm{R} \& \mathrm{D}^{\text {a }}$	Teaching	Other	None
All fields	271,540	100.0	2.5	22.5	38.3	20.0	6.7	10.0
Computer applications	2,600	100.0	na	22.7	50.0	9.2	7.2	10.9
Management, sales, administration	32,780	100.0	1.0	30.7	30.0	27.5	7.9	2.9
R\&D ${ }^{\text {a }}$	109,980	100.0	3.9	22.9	25.8	37.0	4.6	5.8
Teaching	106,130	100.0	1.9	19.3	57.4	na	9.4	12.0
Other	20,050	100.0	1.3	22.9	18.7	21.6	1.2	34.3
Science	226,400	100.0	2.3	22.9	38.4	19.4	6.7	10.2
Computer applications	2,000	100.0	na	26.9	49.4	9.3	5.3	9.1
Management, sales, administration	25,880	100.0	1.0	30.4	30.2	27.0	8.3	3.2
R\&D ${ }^{\text {a }}$	91,840	100.0	3.5	24.4	25.0	36.1	4.9	6.0
Teaching	89,820	100.0	1.7	18.9	57.7	na	9.0	12.6
Other	16,850	100.0	1.3	24.4	19.7	21.9	1.4	31.3
Biological, agricultural, and environmental life sciences								
Computer applications	690	100.0	na	27.3	59.8	8.5	S	S
Management, sales, administration	9,210	100.0	1.1	25.8	37.1	23.2	9.0	3.8
R\&D ${ }^{\text {a }}$	43,050	100.0	1.9	31.9	26.3	24.9	6.4	8.6
Teaching	19,820	100.0	0.8	23.6	53.8	na	9.6	12.2
Other	7,040	100.0	S	19.5	25.1	24.9	1.3	28.5
Computer and information sciences	5,790	100.0	10.3	15.2	46.5	17.8	5.2	5.2
Computer applications	120	100.0	na	S	55.5	S	S	S
Management, sales, administration	470	100.0	S	29.0	31.0	23.3	10.8	S
R\&D ${ }^{\text {a }}$	2,050	100.0	9.2	13.1	31.0	43.8	S	S
Teaching	2,950	100.0	13.6	15.0	61.8	na	6.5	3.1
Other	200	100.0	S	S	S	S	S	75.8
Mathematics and statistics	17,290	100.0	4.3	13.0	43.5	22.7	4.8	11.8
Computer applications	290	100.0	na	20.5	43.5	17.6	S	S
Management, sales, administration	1,670	100.0	S	29.2	28.5	37.3	S	3.2
R\&D ${ }^{\text {a }}$	4,990	100.0	7.5	5.3	20.2	63.7	S	3.4
Teaching	9,790	100.0	3.7	14.0	59.7	na	7.8	14.8
Other	550	100.0	S	11.8	12.5	14.2	S	61.4
Physical sciences	38,760	100.0	4.9	21.5	40.2	18.9	5.2	9.3
Computer applications	610	100.0	na	21.7	46.2	S	9.6	17.0
Management, sales, administration	4,100	100.0	3.0	30.3	33.0	25.1	4.9	3.6
R\&D ${ }^{\text {a }}$	16,660	100.0	7.6	19.3	29.6	35.9	3.0	4.6
Teaching	15,640	100.0	2.2	21.6	55.7	na	7.9	12.5
Other	1,750	100.0	9.7	20.5	18.2	16.3	S	35.3
Psychology	34,640	100.0	1.3	25.1	33.5	19.3	10.1	10.6
Computer applications	120	100.0	na	55.3	S	S	S	S
Management, sales, administration	4,110	100.0	S	28.8	23.5	29.3	15.8	1.9
R\&D ${ }^{\text {a }}$	11,300	100.0	2.8	25.4	20.3	39.5	8.3	3.7
Teaching	14,200	100.0	0.7	20.4	52.5	na	12.9	13.5
Other	4,920	100.0	S	34.1	17.7	21.1	1.7	25.5
Social sciences	50,110	100.0	0.9	18.8	43.8	20.7	5.8	10.0
Computer applications	190	100.0	na	35.9	44.1	S	S	S
Management, sales, administration	6,320	100.0	S	38.8	23.0	29.6	6.0	2.6
R\&D ${ }^{\text {a }}$	13,790	100.0	2.3	14.9	20.1	57.5	2.0	3.2
Teaching	27,410	100.0	0.6	15.3	63.3	na	8.0	12.8
Other	2,390	100.0	S	26.5	11.0	22.9	S	37.8

TABLE 23. Employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, primary work activity, and secondary work activity: 2006

Field and primary work activity	All employed	Secondary work activity (\%)						
		All activities	Computer applications	Management, sales, administration	$R \& D^{\text {a }}$	Teaching	Other	None
Engineering	30,230	100.0	4.4	17.6	42.0	23.0	3.6	9.4
Computer applications	550	100.0	na	9.2	52.3	9.6	10.3	18.5
Management, sales, administration	3,990	100.0	1.4	28.9	35.3	28.9	3.9	1.6
R\&D ${ }^{\text {a }}$	13,430	100.0	6.5	14.1	32.1	40.6	2.1	4.6
Teaching	10,380	100.0	3.6	19.2	62.1	na	5.7	9.4
Other	1,870	100.0	S	12.5	13.3	15.3	S	57.8
Health	14,920	100.0	1.6	25.3	30.0	21.8	12.8	8.5
Computer applications	S	S	na	S	S	S	S	S
Management, sales, administration	2,910	100.0	S	36.2	21.2	30.3	10.0	2.4
R\&D ${ }^{\text {a }}$	4,710	100.0	3.7	19.3	22.2	43.1	6.0	5.6
Teaching	5,920	100.0	0.9	26.4	44.0	na	22.1	6.6
Other	1,320	100.0	S	19.0	13.8	26.1	S	40.2

na = not applicable; same work activity cannot be reported as both primary and secondary except Management, R\&D and Other, because these categories include more than one type of work activity.
$S=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ R\&D includes basic or applied research, development, and design.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Primary and secondary work activities were self-defined by the respondent in response to the question: "On which two activities...did you work the most hours during a typical week on this job?"

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 24. Employed doctoral scientists and engineers, by selected demographic characteristics and broad field of doctorate: 2006 (Percent distribution)

Characteristic		Science							Engineering	Health
	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	All sciences	iological, tural, and nental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Number employed	621,630	488,860	155,990	13,580	29,170	113,330	96,570	80,220	106,520	26,250
All characteristics	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Sex										
Male	70.6	68.0	67.1	82.8	82.5	83.5	48.0	64.3	90.2	39.5
Female	29.4	32.0	32.9	17.2	17.5	16.5	52.0	35.7	9.8	60.5
Race/ethnicity										
American Indian/Alaska Native	0.7	0.7	0.7	S	0.3	0.5	0.9	1.1	0.4	0.8
Asian	17.0	13.5	16.1	31.8	20.9	18.2	3.1	8.5	34.6	11.6
Black	3.0	3.1	2.5	2.1	2.0	1.7	4.4	5.1	2.2	5.9
Hispanic	2.9	3.1	2.9	2.4	3.0	2.4	3.8	3.5	2.3	2.9
White	76.2	79.5	77.6	63.3	73.7	77.0	87.6	81.6	60.5	78.7
Other race/ethnicity ${ }^{\text {a }}$	0.2	0.2	0.2	S	S	0.2	0.2	0.2	0.1	S
Age										
Under 35	10.9	10.4	12.0	14.3	11.4	11.4	9.3	6.1	14.0	7.5
35-39	13.3	13.0	13.9	18.9	14.5	13.1	10.2	12.9	15.1	12.4
40-44	14.4	13.9	14.6	21.6	13.6	15.9	11.5	11.3	17.6	11.4
45-49	14.4	14.2	15.5	19.7	10.8	15.0	12.3	13.5	15.5	12.8
50-54	14.7	15.1	15.7	14.3	11.2	12.8	18.4	14.7	11.7	19.7
55-59	14.0	14.7	13.3	8.8	14.0	12.0	18.7	17.6	9.6	19.3
60-64	10.9	11.4	9.6	2.0	14.2	11.2	12.1	14.7	8.9	11.2
65-75	7.3	7.3	5.4	S	10.2	8.7	7.4	9.1	7.6	5.7
Citizenship status										
U.S. citizen	89.5	91.3	90.8	77.8	83.4	89.7	97.8	92.1	80.7	91.8
Native born	75.3	79.8	78.4	54.9	66.5	74.6	93.2	82.6	53.0	81.9
Naturalized	14.2	11.6	12.4	22.9	16.9	15.1	4.6	9.5	27.7	9.9
Non-U.S. citizen	10.5	8.7	9.2	22.2	16.6	10.3	2.2	7.9	19.3	8.2
Permanent resident	6.6	5.6	5.8	14.4	10.5	6.4	1.7	5.4	11.5	5.2
Temporary resident	3.9	3.1	3.4	7.7	6.0	3.9	0.5	2.5	7.8	3.0
Years since doctorate										
5 or less	18.3	17.4	18.7	26.8	16.0	15.0	16.7	18.3	19.9	27.9
6-10	17.5	16.8	17.4	26.4	16.2	16.0	15.9	16.2	19.8	20.7
11-15	15.5	14.9	15.3	24.1	13.6	15.0	14.8	13.4	17.8	17.8
16-20	12.5	12.6	12.4	13.1	10.0	13.0	13.8	12.1	12.2	11.4
21-25	11.5	12.2	12.4	6.5	10.0	11.0	14.3	12.8	8.6	9.6
More than 25	24.7	26.0	23.9	3.0	34.2	30.0	24.5	27.3	21.8	12.7
Place of birth ${ }^{\text {b }}$										
United States	74.0	78.4	77.1	53.4	64.7	73.3	92.1	80.9	52.2	80.4
Europe	4.4	4.5	3.7	7.9	8.5	5.5	2.6	4.6	4.7	2.9
Asia	17.1	13.0	15.1	32.8	21.3	17.6	2.5	8.7	37.5	11.1
North America	0.9	1.0	0.9	1.5	0.7	0.9	1.0	1.2	0.7	1.2
Central America	0.4	0.4	0.4	S	0.4	0.4	0.3	0.5	0.3	0.2
Caribbean	0.4	0.4	0.3	S	0.5	0.4	0.5	0.7	0.4	0.5
South America	0.9	0.8	1.0	1.2	1.2	0.6	0.5	1.0	1.2	0.8
Africa	1.2	1.0	1.1	1.5	1.6	0.8	0.3	1.7	2.1	1.7
Oceania	0.6	0.5	0.4	1.2	1.2	0.5	0.2	0.7	0.9	1.2

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\text {b }}$ Percentages are based on persons who reported place of birth. Persons who did not specify place of birth are included in total but not shown separately.
NOTES: Numbers are rounded to nearest 10 . Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 25. Employed doctoral scientists and engineers, by selected demographic characteristics and citizenship status: 2006 (Percent distribution)

Characteristic	All employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
Number employed	621,630	556,640	468,060	88,580	64,990	40,880	24,110
All characteristics	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Sex							
Male	70.6	70.3	69.0	77.2	73.4	72.8	74.4
Female	29.4	29.7	31.0	22.8	26.6	27.2	25.6
Race/ethnicity							
American Indian/Alaska Native	0.7	0.7	0.9	0.1	S	S	S
Asian	17.0	11.7	2.2	61.8	62.6	58.7	69.1
Black	3.0	3.0	2.8	4.5	3.0	3.6	1.9
Hispanic	2.9	2.7	2.3	5.0	4.7	5.1	4.2
White	76.2	81.6	91.7	28.2	29.6	32.5	24.8
Other race/ethnicity ${ }^{\text {a }}$	0.2	0.2	0.1	0.3	0.1	S	S
Age							
Under 35	10.9	8.4	9.2	4.5	32.1	17.7	56.5
35-39	13.3	11.4	11.7	9.9	30.1	32.8	25.6
40-44	14.4	13.8	12.7	19.7	20.0	24.6	12.3
45-49	14.4	15.0	14.0	20.3	9.2	12.4	3.8
50-54	14.7	15.9	15.9	15.8	4.6	6.6	1.2
55-59	14.0	15.5	16.0	12.8	1.7	2.4	0.4
60-64	10.9	12.1	12.6	9.2	1.3	2.0	0.3
65-75	7.3	8.0	8.1	7.8	0.9	1.5	S
Years since doctorate							
5 or less	18.3	14.3	15.4	8.4	52.4	31.8	87.4
6-10	17.5	16.0	15.7	17.6	30.0	41.5	10.4
11-15	15.5	16.3	14.4	26.0	9.4	14.1	1.4
16-20	12.5	13.5	13.2	15.2	3.9	5.9	0.6
21-25	11.5	12.6	12.9	11.2	1.8	2.8	S
More than 25	24.7	27.3	28.4	21.6	2.5	3.8	0.2
Place of birth ${ }^{\text {b }}$							
United States	74.0	82.6	98.2	0.3	0.5	0.6	0.4
Europe	4.4	2.8	0.7	14.1	18.5	20.6	15.0
Asia	17.1	11.6	0.6	70.0	64.1	60.3	70.7
North America	0.9	0.6	0.3	2.2	4.1	5.1	2.4
Central America	0.4	0.2	0.1	1.2	1.7	1.8	1.5
Caribbean	0.4	0.4	S	2.3	0.7	0.9	0.4
South America	0.9	0.6	0.1	3.1	3.3	3.1	3.7
Africa	1.2	0.9	0.1	5.4	3.6	4.0	2.9
Oceania	0.6	0.2	S	1.3	3.5	3.7	3.1

S = suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{b}$ Persons who did not specify place of birth are included in total but not shown separately. Percentages are based on persons who reported place of birth.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 26. Employed doctoral scientists and engineers, by selected demographic and employment-related characteristics and sector of employment: 2006
(Percent distribution)

Characteristic	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State and local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
Number employed	621,630	271,540	20,920	192,900	38,560	38,450	18,210	39,620	1,430
All characteristics	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Sex									
Male	70.6	67.4	57.0	80.6	61.9	71.4	68.8	59.6	73.1
Female	29.4	32.6	43.0	19.4	38.1	28.6	31.2	40.4	26.9
Race/ethnicity									
American Indian/Alaska Native	0.7	0.7	0.5	0.5	0.5	0.7	1.5	0.9	S
Asian	17.0	14.1	6.9	26.7	13.3	12.6	13.3	5.1	18.4
Black	3.0	3.8	6.3	1.9	2.5	3.1	4.6	1.5	S
Hispanic	2.9	3.4	4.8	2.1	2.6	2.5	3.2	2.7	4.0
White	76.2	77.8	81.5	68.6	80.9	80.8	77.2	89.7	74.1
Other race/ethnicity ${ }^{\dagger}$	0.2	0.2	S	0.2	0.1	0.2	S	S	S
Age									
Under 35	10.9	13.3	5.0	10.6	11.0	9.4	7.5	2.0	3.9
35-39	13.3	14.3	9.3	14.9	13.8	10.9	8.3	5.1	21.5
40-44	14.4	13.6	8.8	18.3	13.8	12.7	11.8	8.2	13.5
45-49	14.4	13.8	15.1	15.5	15.2	15.5	14.6	11.0	9.5
50-54	14.7	13.7	16.6	14.7	15.0	16.0	20.3	16.1	17.7
55-59	14.0	13.5	22.1	11.5	14.8	15.1	21.7	20.3	13.9
60-64	10.9	10.4	13.4	9.2	10.5	13.9	10.4	18.8	19.9
65-75	7.3	7.5	9.8	5.2	5.8	6.4	5.4	18.4	S
Citizenship status									
U.S. citizen	89.5	88.5	96.6	86.1	92.7	97.4	95.3	97.6	58.6
Native born	75.3	76.9	86.2	65.7	82.3	82.9	79.9	89.7	49.3
Naturalized	14.2	11.5	10.4	20.4	10.4	14.5	15.4	7.9	9.3
Non-U.S. citizen	10.5	11.5	3.4	13.9	7.3	2.6	4.7	2.4	41.4
Permanent resident	6.6	6.8	1.9	9.5	3.9	1.3	3.0	2.2	12.1
Temporary resident	3.9	4.7	1.6	4.4	3.3	1.2	1.8	0.2	29.3
Years since doctorate									
5 or less	18.3	22.6	14.8	14.9	20.7	17.5	17.3	5.7	15.6
6-10	17.5	16.8	15.5	20.2	18.0	16.7	16.2	9.7	21.5
11-15	15.5	14.4	15.7	18.2	14.7	14.0	13.2	13.7	16.6
16-20	12.5	11.6	14.6	13.1	14.4	12.4	15.3	11.8	7.8
21-25	11.5	10.4	13.5	11.4	10.2	12.9	15.2	16.5	9.6
More than 25	24.7	24.2	26.0	22.1	21.9	26.4	22.9	42.6	29.0
Primary or secondary work activity ${ }^{9}$									
Any R\&D	62.2	68.4	17.0	65.2	57.3	69.7	50.2	31.2	71.2
Applied research	32.9	31.7	7.6	35.9	36.5	51.9	33.5	17.1	58.8

TABLE 26. Employed doctoral scientists and engineers, by selected demographic and employment-related characteristics and sector of employment: 2006

Characteristic	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	$\begin{array}{r} \text { Private } \\ \text { for-profit } \end{array}$	$\begin{gathered} \text { Private } \\ \text { non-profit } \end{gathered}$	Federal government	State and local government	$\begin{aligned} & \text { Self- } \\ & \text { employed d } \end{aligned}$	Other ${ }^{\text {e }}$
Basic research	24.2	42.4	4.9	6.0	20.9	26.6	12.7	4.2	10.9
Design	6.2	1.4	1.2	13.9	5.8	5.1	6.8	6.1	S
Development	14.0	3.3	4.8	32.6	9.8	10.6	8.6	11.6	11.8
Computer applications	7.7	3.5	2.6	14.1	8.0	8.1	12.2	5.1	5.5
Management, sales, administration	41.7	30.8	31.9	52.3	53.0	51.9	56.4	40.7	59.4
Professional services	16.0	7.5	18.6	15.3	27.1	13.5	28.6	62.3	9.3
Teaching	30.3	59.1	71.4	2.1	7.6	3.7	5.0	9.0	S
Other activities	7.8	6.6	12.4	7.8	8.1	9.8	9.1	9.6	22.9

S = suppressed for reliability or confidentiality.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institution includes 2 -year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{\text {d }}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
${ }^{\dagger}$ Includes Native Hawaiians/Other Pacific Islanders and respondents choosing multiple races (excluding those selecting Hispanic ethnicity).
${ }^{9}$ Detail exceeds 100% due to multiple responses.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 27. Employed doctoral scientists and engineers, by selected demographic and employment-related characteristics, race/ethnicity, and sex: 2006
(Percent distribution)

Characteristic	All employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
	Total	Male	Female																		
Number employed	621,630	438,900	182,730	4,130	2,750	1,380	105,830	79,220	26,610	18,870	10,590	8,280	18,190	11,330	6,850	473,610	334,360	139,250	1,010	650	360
All characteristics	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Age																					
Under 35	10.9	9.5	14.1	6.0	5.3	7.5	17.4	15.5	23.2	11.1	9.9	12.7	13.1	10.8	16.8	9.4	8.1	12.4	25.1	24.2	26.9
35-39	13.3	12.0	16.4	10.1	6.6	17.1	19.7	18.3	23.8	15.8	12.7	19.8	17.2	14.9	21.0	11.7	10.5	14.6	13.4	14.2	S
40-44	14.4	14.0	15.5	12.0	10.1	15.8	21.4	21.2	22.0	13.8	14.2	13.3	17.4	17.0	18.2	12.8	12.2	14.2	21.0	9.4	41.8
45-49	14.4	14.4	14.3	13.2	14.0	11.6	15.5	16.1	13.7	15.6	16.6	14.4	18.0	18.6	17.1	14.0	13.8	14.3	10.0	11.0	S
50-54	14.7	14.4	15.4	15.5	13.1	20.3	10.2	11.0	7.8	14.5	14.5	14.4	12.2	12.3	12.1	15.8	15.3	17.0	10.3	12.8	S
55-59	14.0	14.4	13.0	17.3	17.8	16.4	7.0	7.6	5.2	15.7	16.5	14.6	9.2	9.4	8.9	15.7	16.1	14.6	8.9	13.3	S
60-64	10.9	12.5	7.2	14.5	19.1	5.3	5.0	5.9	2.7	8.6	9.3	7.8	6.9	8.4	4.3	12.5	14.3	8.2	9.2	12.9	S
65-75	7.3	8.6	4.1	11.4	14.0	6.0	3.9	4.6	1.7	4.9	6.3	3.1	6.1	8.7	1.6	8.2	9.6	4.7	S	S	S
Years since doctorate																					
5 or less	18.3	15.4	25.2	16.2	12.4	23.9	27.4	24.7	35.5	26.2	23.1	30.1	26.4	22.2	33.5	15.6	12.7	22.5	41.6	38.9	46.4
6-10	17.5	15.6	21.8	16.1	12.2	23.9	23.6	22.6	26.8	22.4	20.4	25.0	21.7	20.0	24.6	15.7	13.7	20.5	15.4	10.2	24.8
11-15	15.5	14.8	17.3	18.0	17.0	20.0	21.2	21.6	20.0	14.0	14.1	13.9	17.2	16.6	18.2	14.3	13.1	16.9	18.0	15.2	22.9
16-20	12.5	12.4	12.7	11.2	11.1	11.4	9.7	10.6	7.1	12.9	13.8	11.7	13.2	13.3	13.0	13.1	12.8	13.9	S	S	S
21-25	11.5	11.8	10.7	11.2	10.4	13.0	6.3	7.1	4.1	10.0	10.0	9.9	7.0	7.3	6.6	12.9	13.2	12.2	9.7	14.5	S
More than 25	24.7	29.9	12.3	27.2	36.9	7.9	11.7	13.4	6.5	14.6	18.5	9.5	14.4	20.7	4.1	28.5	34.5	14.0	10.7	15.8	S
Citizenship status																					
U.S. citizen	89.5	89.1	90.5	99.8	100.0	99.3	61.6	61.9	60.5	89.8	85.2	95.8	83.1	80.5	87.3	95.9	95.9	96.0	94.9	96.1	92.9
Native born	75.3	73.6	79.5	97.8	97.1	99.3	9.8	8.3	14.4	68.5	54.5	86.5	58.6	54.5	65.3	90.7	90.1	92.0	69.6	64.8	78.0
Naturalized	14.2	15.6	11.1	1.9	2.9	S	51.8	53.6	46.1	21.3	30.7	9.3	24.5	26.0	22.1	5.3	5.8	4.0	25.4	31.2	14.9
Non-U.S. citizen	10.5	10.9	9.5	S	S	S	38.4	38.1	39.5	10.2	14.8	4.2	16.9	19.5	12.7	4.1	4.1	4.0	5.1	S	S
Permanent resident	6.6	6.8	6.1	S	S	S	22.7	22.4	23.4	7.7	11.0	3.5	11.4	13.0	8.8	2.8	2.8	2.9	S	S	S
Temporary resident	3.9	4.1	3.4	S	S	S	15.7	15.6	16.1	2.4	3.8	0.7	5.5	6.5	3.9	1.3	1.3	1.1	S	S	S
Employer location																					
New England	8.4	8.0	9.4	4.7	4.3	5.3	8.3	7.8	9.8	4.3	4.1	4.6	6.6	6.4	6.8	8.7	8.2	9.8	13.2	12.3	14.7
Middle Atlantic	15.4	15.1	16.1	9.9	10.9	7.9	16.7	16.6	16.8	14.3	14.1	14.7	13.4	12.6	14.9	15.3	14.9	16.2	10.2	S	15.5
East North Central	13.2	13.2	13.1	13.8	12.6	16.3	12.7	13.3	10.6	12.0	12.6	11.3	10.0	10.8	8.8	13.5	13.3	13.9	9.1	12.3	S
West North Central	5.7	5.8	5.5	5.8	5.9	5.7	4.1	4.2	3.8	4.4	5.5	3.0	4.1	4.9	2.8	6.2	6.3	6.1	7.2	S	S
South Atlantic	19.3	18.7	20.7	16.7	15.1	19.8	16.0	15.4	17.8	34.9	32.2	38.5	19.2	19.1	19.3	19.4	19.1	20.2	15.9	15.0	17.5
East South Central	3.9	4.1	3.5	6.7	7.5	4.9	2.7	3.0	1.9	6.7	7.3	5.9	2.3	3.1	1.1	4.1	4.2	3.8	S	S	S
West South Central	7.8	8.2	7.0	14.8	15.4	13.7	9.0	8.8	9.5	9.0	8.6	9.5	10.7	10.7	10.8	7.3	7.9	6.1	17.8	21.6	S
Mountain	7.0	7.4	6.0	10.5	10.6	10.4	4.3	4.3	4.1	2.5	3.4	1.3	7.7	7.8	7.7	7.7	8.3	6.5	S	S	S
Pacific	18.7	19.0	18.1	17.1	17.7	15.9	25.9	26.0	25.5	11.7	12.1	11.2	17.6	17.0	18.6	17.5	17.6	17.1	20.8	18.6	24.7
U.S. territories and other areas	0.5	0.5	0.6	S	S	S	0.4	0.4	S	S	S	S	8.2	7.5	9.3	0.3	0.3	0.3	S	S	S
Sector of employment																					
4-year educational institutions ${ }^{\text {b }}$	43.7	41.7	48.5	44.9	45.6	43.5	36.1	33.2	45.0	55.0	55.2	54.8	51.5	50.7	52.7	44.6	42.9	48.6	41.8	38.6	47.7

TABLE 27. Employed doctoral scientists and engineers, by selected demographic and employment-related characteristics, race/ethnicity, and sex: 2006 (Percent distribution)

Characteristic	All employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
	Total	Male	Female																		
Other educational institutions ${ }^{\text {c }}$	3.4	2.7	4.9	2.4	S	5.1	1.4	1.2	2.0	7.0	6.6	7.5	5.5	2.8	10.0	3.6	3.0	5.1	S	S	S
Private for-profit ${ }^{\text {d }}$	31.0	35.4	20.4	25.0	29.9	15.2	48.6	52.8	36.1	18.9	20.8	16.6	22.7	28.6	13.1	27.9	32.1	18.1	38.0	44.0	27.3
Private non-profit	6.2	5.4	8.0	4.9	2.8	8.9	4.9	4.3	6.4	5.0	4.3	6.0	5.5	4.5	7.3	6.6	5.8	8.5	5.3	S	S
Federal government	6.2	6.3	6.0	6.4	5.9	7.4	4.6	4.4	5.2	6.4	5.8	7.2	5.3	5.3	5.3	6.6	6.7	6.1	8.3	8.5	S
State and local government	2.9	2.9	3.1	6.6	7.1	5.6	2.3	2.1	2.8	4.4	4.0	5.0	3.2	2.9	3.6	3.0	3.0	3.0	S	S	S
Self-employed ${ }^{\text {e }}$	6.4	5.4	8.8	8.9	6.6	13.5	1.9	1.8	2.3	3.2	3.3	3.0	5.9	4.9	7.6	7.5	6.3	10.4	S	S	S
Other ${ }^{\text {f }}$	0.2	0.2	0.2	S	S	S	0.2	0.3	S	S	S	S	0.3	S	S	0.2	0.2	0.2	S	S	S
Primary or secondary work activity ${ }^{9}$																					
Any R\&D	62.2	65.2	55.0	56.4	59.0	51.2	74.5	75.5	71.6	53.3	57.7	47.7	63.0	68.2	54.3	59.8	62.9	52.3	55.4	57.5	51.6
Applied research	32.9	34.1	30.3	32.3	34.2	28.6	39.4	39.1	40.2	27.6	29.7	25.0	33.6	35.0	31.5	31.7	33.0	28.7	35.0	40.5	25.2
Basic research	24.2	24.1	24.3	22.0	20.5	25.2	26.8	24.5	33.6	23.2	24.7	21.4	28.2	31.3	23.1	23.5	23.8	22.7	22.8	20.6	26.7
Design	6.2	7.7	2.7	3.7	5.4	S	9.7	11.5	4.4	2.6	3.4	1.4	6.0	8.2	2.5	5.6	6.9	2.5	S	S	S
Development	14.0	15.9	9.5	13.5	13.9	12.6	24.6	26.9	17.7	10.6	11.3	9.6	11.0	11.6	10.0	11.9	13.6	7.8	7.8	9.3	S
Computer applications	7.7	9.3	3.7	4.4	5.3	S	13.5	14.9	9.4	3.2	4.3	1.8	5.6	7.5	2.3	6.7	8.3	2.8	8.1	12.7	S
Management, sales, administration	41.7	41.3	42.6	44.0	44.6	43.0	33.7	33.9	33.1	42.1	38.4	46.8	37.7	37.5	38.1	43.5	43.2	44.3	44.0	38.4	54.1
Professional services	16.0	13.1	22.9	20.7	19.0	24.0	7.7	6.5	11.2	17.2	12.9	22.8	16.8	12.3	24.2	17.7	14.6	25.1	27.5	28.7	25.5
Teaching	30.3	28.9	33.6	32.2	34.4	27.9	17.7	17.1	19.6	42.2	42.3	42.0	35.2	33.3	38.4	32.4	31.0	35.7	23.6	18.7	32.4
Other activities	7.8	7.4	8.7	7.5	5.9	10.6	8.6	8.6	8.6	9.0	9.6	8.2	8.0	7.6	8.7	7.5	7.1	8.7	S	S	S
Federal support																					
Receiving support	32.5	33.2	30.9	33.8	30.8	39.7	30.0	29.4	31.8	31.1	31.8	30.4	37.3	38.8	34.9	32.9	34.0	30.4	36.0	41.0	27.0
Not receiving support	67.5	66.8	69.1	66.2	69.2	60.3	70.0	70.6	68.2	68.9	68.2	69.6	62.7	61.2	65.1	67.1	66.0	69.6	64.0	59.0	73.0
Degree - job relationship																					
Closely related	65.0	63.8	68.1	70.2	70.7	69.1	61.0	61.1	60.7	70.7	71.2	70.1	71.1	71.0	71.3	65.4	63.9	69.2	67.2	65.2	70.8
Somewhat related	26.4	27.2	24.5	21.0	20.7	21.6	29.9	29.7	30.5	21.1	20.8	21.5	22.2	20.7	24.6	26.1	27.1	23.5	17.1	20.8	S
Not related	8.5	9.0	7.4	8.8	8.6	9.3	9.1	9.2	8.8	8.2	8.0	8.4	6.7	8.3	4.1	8.5	9.0	7.2	15.7	14.0	18.7

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4 -year colleges or universities, medical schools (including university-afiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\text {c }}$ Other educational institution includes 2 -year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{d}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
${ }^{9}$ Detail exceeds 100% due to multiple responses
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Primary and secondary work activities were self-defined by the respondent in response to the question: "On which two activities...did you work the most hours during a typical week on this job?"

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 28. Employed doctoral scientists and engineers, by selected demographic and employment-related characteristics and primary or secondary work activity: 2006 (Percent distribution)

Characteristic	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Number employed	621,630	386,480	204,820	150,240	38,660	87,110	47,650	258,910	99,310	188,140	48,260
All characteristics	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Sex											
Male	70.6	74.0	73.0	70.5	87.2	80.2	85.9	69.9	57.8	67.3	67.2
Female	29.4	26.0	27.0	29.5	12.8	19.8	14.1	30.1	42.2	32.7	32.8
Race/ethnicity											
American Indian/Alaska Native	0.7	0.6	0.7	0.6	0.4	0.6	0.4	0.7	0.9	0.7	0.6
Asian	17.0	20.4	20.3	18.9	26.7	29.9	29.9	13.8	8.2	10.0	18.8
Black	3.0	2.6	2.5	2.9	1.3	2.3	1.3	3.1	3.3	4.2	3.5
Hispanic	2.9	3.0	3.0	3.4	2.8	2.3	2.1	2.7	3.1	3.4	3.0
White	76.2	73.3	73.3	74.0	68.8	64.8	66.1	79.6	84.3	81.6	74.0
Other race/ethnicity ${ }^{\text {a }}$	0.2	0.1	0.2	0.2	S	0.1	0.2	0.2	0.3	0.1	S
Age											
Under 35	10.9	13.9	14.4	18.4	11.9	11.6	14.1	6.9	7.4	8.6	11.8
35-39	13.3	15.5	15.0	17.6	14.3	15.3	16.8	12.1	9.8	12.7	11.2
40-44	14.4	15.6	15.1	14.8	14.8	17.7	17.5	15.0	11.2	13.2	13.6
45-49	14.4	14.4	14.3	13.6	14.4	14.6	15.0	15.7	12.7	14.3	15.5
50-54	14.7	13.7	14.1	11.5	14.0	14.5	13.0	16.1	17.4	14.5	15.1
55-59	14.0	11.8	12.2	10.3	12.0	11.5	10.5	16.0	18.4	14.9	13.6
60-64	10.9	9.0	8.8	7.5	11.6	9.4	8.1	11.6	13.7	12.6	10.8
65-75	7.3	6.1	6.0	6.3	6.9	5.4	5.1	6.5	9.4	9.0	8.4
Years since doctorate											
5 or less	18.3	21.8	23.6	27.7	17.7	17.5	21.4	12.4	13.9	16.9	21.2
6-10	17.5	18.8	18.3	17.7	19.8	21.0	21.9	17.3	15.4	16.9	15.3
11-15	15.5	15.5	15.1	13.9	16.4	17.1	17.6	16.8	14.9	15.1	15.3
16-20	12.5	11.8	11.7	10.9	11.6	12.2	11.5	14.0	13.1	12.7	12.6
21-25	11.5	10.2	10.1	9.0	10.1	10.5	9.4	13.2	14.3	11.2	12.4
More than 25	24.7	22.0	21.2	20.8	24.3	21.8	18.3	26.3	28.4	27.2	23.2
Citizenship status											
U.S. citizen	89.5	86.4	86.5	84.3	85.2	84.0	81.6	93.5	96.7	92.6	87.7
Native born	75.3	70.8	71.4	71.0	63.9	62.5	61.3	80.0	87.3	81.3	72.8
Naturalized	14.2	15.6	15.1	13.3	21.2	21.5	20.3	13.5	9.4	11.2	14.9
Non-U.S. citizen	10.5	13.6	13.5	15.7	14.8	16.0	18.4	6.5	3.3	7.4	12.3
Permanent resident	6.6	8.2	7.7	9.0	9.3	10.2	10.9	4.7	2.2	5.3	8.5
Temporary resident	3.9	5.4	5.8	6.8	5.5	5.8	7.5	1.8	1.1	2.1	3.9
Sector of employment											
4 -year educational institutions ${ }^{\text {b }}$	43.7	48.1	42.1	76.7	9.7	10.3	19.8	32.3	20.4	85.2	37.1

TABLE 28. Employed doctoral scientists and engineers, by selected demographic and employment-related characteristics and primary or secondary work activity: 2006 (Percent distribution)

Characteristic	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Other educational institutions ${ }^{\text {c }}$	3.4	0.9	0.8	0.7	0.6	1.2	1.1	2.6	3.9	7.9	5.4
Private for-profit ${ }^{\text {d }}$	31.0	32.5	33.8	7.7	69.2	72.3	57.0	39.0	29.7	2.1	31.2
Private non-profit	6.2	5.7	6.9	5.4	5.7	4.4	6.5	7.9	10.5	1.6	6.4
Federal government	6.2	6.9	9.7	6.8	5.1	4.7	6.5	7.7	5.2	0.8	7.8
State and local government	2.9	2.4	3.0	1.5	3.2	1.8	4.7	4.0	5.2	0.5	3.4
Self-employed ${ }^{\text {e }}$	6.4	3.2	3.3	1.1	6.3	5.3	4.2	6.2	24.8	1.9	7.9
Other sector ${ }^{\text {t }}$	0.2	0.3	0.4	0.1	S	0.2	0.2	0.3	0.1	S	0.7
Employer location											
New England	8.4	8.9	9.0	9.2	6.9	8.7	8.8	7.9	7.9	8.1	8.9
Middle Atlantic	15.4	15.2	14.5	15.5	14.9	16.8	15.5	15.1	17.3	15.8	13.5
East North Central	13.2	13.2	12.5	14.4	12.0	13.1	9.8	12.5	12.3	16.1	14.0
West North Central	5.7	5.4	5.1	6.3	3.6	4.4	3.5	5.7	6.2	7.2	6.2
South Atlantic	19.3	19.0	20.7	19.1	15.5	15.6	18.1	20.3	19.8	17.9	21.1
East South Central	3.9	3.8	4.1	3.9	3.2	2.9	3.0	3.7	3.6	5.1	3.6
West South Central	7.8	7.7	7.2	7.7	10.6	7.7	7.9	7.6	7.2	8.5	8.1
Mountain	7.0	7.1	7.8	6.6	7.5	6.2	6.8	7.0	6.4	7.3	6.3
Pacific	18.7	19.2	18.6	16.7	25.5	24.1	26.3	19.7	19.0	13.4	17.8
U.S. territories and other areas	0.5	0.5	0.5	0.5	0.3	0.5	0.3	0.5	0.4	0.5	0.6

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\text {c }}$ Other educational institution includes 2 -year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {d }}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
NOTES: Numbers are rounded to nearest 10 . Numbers for work activities sum to more than 100% because of multiple responses. Primary and secondary work activities were self-defined by the respondent in response to the question: "On which two activities...did you work the most hours during a typical week on this job?"

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	All fields	Employed			Unemployed	Retired	Not employed, not seeking work
		Total	Full time	Part time			
All occupations	711,440	621,630	554,330	67,300	8,630	70,590	10,600
Science occupations	421,780	371,210	328,470	42,740	4,560	39,620	6,400
Biological, agricultural, or other life scientist	130,960	116,010	108,270	7,730	1,490	11,370	2,100
Agricultural/food scientist	10,670	9,090	8,430	660	110	1,340	120
Biochemist/biophysicist	16,530	14,750	14,120	630	240	1,140	400
Biological scientist	24,220	21,080	19,840	1,230	340	2,150	660
Forestry/conservation scientist	1,920	1,660	1,470	190	70	170	S
Medical scientist	38,700	35,610	33,440	2,170	480	2,030	590
Postsecondary teacher, agricultural/other natural sciences	5,390	4,470	4,260	210	S	920	S
Postsecondary teacher, biological sciences	28,160	24,670	22,260	2,410	150	3,130	210
Other biological/agricultural/life scientist	5,350	4,680	4,450	230	90	480	100
Computer and information scientist	37,440	33,450	31,270	2,180	640	3,030	330
Computer/information scientist	29,510	26,280	24,590	1,690	570	2,350	300
Postsecondary teacher, computer science	7,930	7,170	6,670	500	60	670	S
Mathematical scientist	27,420	24,220	21,790	2,440	110	2,760	320
Mathematical scientist	11,000	9,870	8,980	890	60	980	90
Postsecondary teacher, mathematics/statistics	16,410	14,360	12,810	1,550	S	1,780	230
Physical scientist	87,730	74,490	68,930	5,560	1,370	10,790	1,080
Chemist, except biochemist	27,320	22,330	20,840	1,490	670	3,900	410
Earth/atmospheric/ocean scientist	11,520	9,730	8,950	780	190	1,460	140
Physicist/astronomer	15,420	13,410	12,570	830	230	1,530	250
Postsecondary teacher, chemistry	13,930	11,800	10,810	990	210	1,770	150
Postsecondary teacher, physics	9,420	8,160	7,470	690	S	1,200	S
Postsecondary teacher, other physical sciences	7,260	6,430	5,920	510	S	750	70
Other physical scientist	2,880	2,630	2,370	260	S	180	S
Psychologist	76,550	68,660	50,010	18,650	440	5,630	1,820
Psychologist	56,730	51,090	34,990	16,090	410	3,840	1,400
Postsecondary teacher, psychology	19,810	17,570	15,020	2,550	S	1,790	420
Social scientist	61,670	54,380	48,200	6,180	500	6,050	750
Economist	8,770	7,600	6,970	620	200	900	70
Political scientist	2,050	1,600	1,410	190	S	400	S
Postsecondary teacher, economics	9,780	8,640	7,540	1,100	50	970	130
Postsecondary teacher, political science	9,500	8,390	7,360	1,030	S	1,050	60
Postsecondary teacher, sociology	8,610	7,510	6,740	770	S	910	160
Postsecondary teacher, other social sciences	10,930	9,610	8,630	970	90	1,140	90
Sociologist/anthropologist	4,660	4,160	3,790	380	60	380	60
Other social scientist	7,370	6,870	5,760	1,120	50	300	150
Engineering occupations	90,970	79,380	73,700	5,680	1,260	9,490	830
Aerospace/aeronautical/astronautical engineer	5,940	5,250	4,700	550	S	640	S
Chemical engineer	8,280	7,010	6,590	420	100	1,070	90
Civil/architectural/sanitary engineer	4,960	4,370	4,000	370	S	530	S
Electrical engineer	20,020	18,040	16,990	1,060	240	1,640	100
Materials/metallurgical engineer	1,050	920	800	120	S	110	S
Mechanical engineer	9,390	8,090	7,410	680	180	1,070	50
Postsecondary teacher, engineering	19,460	17,150	16,100	1,050	100	2,020	200
Other engineer	21,870	18,550	17,120	1,430	600	2,410	310
Science and engineering-related occupations	75,140	66,110	60,950	5,160	1,100	6,960	970
Health occupation, except postsecondary teacher	21,870	19,690	17,130	2,560	300	1,490	390
Postsecondary teacher, health and related sciences	18,970	16,940	15,470	1,470	170	1,610	250
SEH manager	26,200	22,790	22,310	480	370	2,880	160
SEH precollege teacher	4,080	3,550	3,060	480	170	270	90
SEH technician/technologist	3,670	2,850	2,690	160	100	640	80

TABLE 29. Doctoral scientists and engineers, by occupation and employment status: 2006

Occupation	Employed				Unemployed	Retired	Not employed, not seeking work
	All fields	Total	Full time	Part time			
Other SEH-related occupation	360	300	300	S	S	60	S
Non-science and engineering occupations	123,550	104,930	91,210	13,720	1,710	14,520	2,400
Arts/humanities-related occupation	6,350	5,170	3,570	1,600	70	770	340
Management-related occupation	25,510	22,290	19,170	3,120	420	2,420	390
Non-SEH manager	48,970	41,920	40,310	1,610	420	6,450	180
Non-SEH postsecondary teacher	14,030	12,130	10,330	1,800	120	1,570	210
Non-SEH precollege/other teacher	3,370	2,600	1,490	1,120	S	520	230
Sales/marketing occupation	9,390	8,010	6,170	1,840	240	800	350
Social service-related occupation	4,530	3,940	2,850	1,100	S	420	160
Other non-SEH occupation	11,390	8,860	7,330	1,530	410	1,590	540

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.

NOTES: If respondent was not employed during survey reference period, occupation when last employed was reported. Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Excludes 360 individuals who reported never having worked so could not be classified by occupation. Full time and part time employment status is for principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 30. Doctoral scientists and engineers, by broad occupation, employment status, and sex: 2006

Employment status and occupation	All	Male	Female
All occupations	711,440	505,390	206,050
Employed full time	554,330	402,210	152,120
Employed part time	67,300	36,690	30,610
Unemployed	8,630	5,780	2,850
Retired	70,590	58,080	12,510
Not employed, not seeking work	10,600	2,630	7,970
Science occupations	421,780	288,480	133,300
Employed full time	328,470	230,680	97,790
Employed part time	42,740	21,790	20,960
Unemployed	4,560	2,900	1,660
Retired	39,620	31,830	7,790
Not employed, not seeking work	6,400	1,280	5,120
Biological, agricultural, or other life scientist	130,960	86,610	44,360
Employed full time	108,270	72,160	36,120
Employed part time	7,730	4,190	3,540
Unemployed	1,490	720	770
Retired	11,370	9,180	2,180
Not employed, not seeking work	2,100	350	1,750
Computer and information scientist	37,440	31,940	5,500
Employed full time	31,270	26,910	4,360
Employed part time	2,180	1,790	400
Unemployed	640	450	190
Retired	3,030	2,640	390
Not employed, not seeking work	330	160	170
Mathematical scientist	27,420	21,500	5,910
Employed full time	21,790	16,980	4,810
Employed part time	2,440	1,890	550
Unemployed	110	50	50
Retired	2,760	2,460	300
Not employed, not seeking work	320	130	200
Physical scientist	87,730	73,590	14,150
Employed full time	68,930	57,730	11,200
Employed part time	5,560	4,500	1,060
Unemployed	1,370	1,100	270
Retired	10,790	9,900	890
Not employed, not seeking work	1,080	350	730
Psychologist	76,550	35,070	41,480
Employed full time	50,010	26,150	23,870
Employed part time	18,650	5,720	12,930
Unemployed	440	190	250
Retired	5,630	2,900	2,730
Not employed, not seeking work	1,820	100	1,710
Social scientist	61,670	39,770	21,900
Employed full time	48,200	30,760	17,440
Employed part time	6,180	3,700	2,480
Unemployed	500	380	120
Retired	6,050	4,740	1,300
Not employed, not seeking work	750	190	560
Engineering occupations	90,970	81,920	9,040
Employed full time	73,700	66,200	7,510
Employed part time	5,680	5,040	640
Unemployed	1,260	1,120	150
Retired	9,490	9,150	350
Not employed, not seeking work	830	420	410

TABLE 30. Doctoral scientists and engineers, by broad occupation, employment status, and sex: 2006

Employment status and occupation	All	Male	Female
Science and engineering-related occupations	75,140	49,420	25,720
Employed full time	60,950	40,930	20,020
Employed part time	5,160	2,190	2,960
Unemployed	1,100	590	520
Retired	6,960	5,460	1,500
Not employed, not seeking work	970	250	720
Non-science and engineering occupations	123,550	85,580	37,980
Employed full time	91,210	64,400	26,800
Employed part time	13,720	7,670	6,050
Unemployed, seeking work	1,710	1,180	530
Unemployed	14,520	11,650	2,870
Not employed, not seeking work	2,400	680	1,720

NOTES: If respondent was not employed during survey reference period, occupation when last employed was reported. Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Excludes 360 individuals who reported never having worked so could not be classified by occupation. Full time and part time employment status is for the principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 31. Doctoral scientists and engineers, by broad occupation, employment status, and race/ethnicity: 2006

Employment status and occupation	All	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{2}$
All occupations	711,440	4,700	113,990	20,310	19,720	551,540	1,190
Employed full time	554,330	3,640	100,370	16,700	16,100	416,610	920
Employed part time	67,300	490	5,460	2,170	2,090	57,000	90
Unemployed	8,630	S	1,300	270	240	6,740	S
Retired	70,590	480	5,280	890	910	62,970	70
Not employed, not seeking work	10,600	50	1,580	280	390	8,220	70
Science occupations	421,780	2,890	61,430	11,640	12,730	332,320	780
Employed full time	328,470	2,150	54,420	9,430	10,270	251,590	600
Employed part time	42,740	330	2,850	1,410	1,550	36,550	S
Unemployed	4,560	S	670	110	140	3,570	S
Retired	39,620	370	2,720	500	510	35,450	60
Not employed, not seeking work	6,400	S	760	190	250	5,150	S
Biological, agricultural, or other life scientist	130,960	890	22,960	2,800	3,890	100,150	280
Employed full time	108,270	780	20,940	2,490	3,350	80,540	170
Employed part time	7,730	50	690	140	240	6,600	S
Unemployed	1,490	S	310	S	60	1,070	S
Retired	11,370	S	770	70	170	10,270	60
Not employed, not seeking work	2,100	S	250	70	70	1,670	S
Computer and information scientist	37,440	120	12,180	510	810	23,800	S
Employed full time	31,270	70	11,100	470	720	18,890	S
Employed part time	2,180	S	310	S	70	1,750	S
Unemployed	640	S	130	S	S	490	S
Retired	3,030	S	460	S	S	2,530	S
Not employed, not seeking work	330	S	180	S	S	140	S
Mathematical scientist	27,420	S	5,850	660	860	20,010	S
Employed full time	21,790	S	5,080	480	740	15,450	S
Employed part time	2,440	S	470	140	80	1,750	S
Unemployed	110	S	S	S	S	70	S
Retired	2,760	S	230	S	S	2,460	S
Not employed, not seeking work	320	S	S	S	S	290	S
Physical scientist	87,730	540	13,750	1,530	2,090	69,730	100
Employed full time	68,930	410	11,770	1,320	1,740	53,600	100
Employed part time	5,560	S	790	130	140	4,480	S
Unemployed	1,370	S	150	S	S	1,150	S
Retired	10,790	110	910	S	90	9,640	S
Not employed, not seeking work	1,080	S	130	S	80	870	S
Psychologist	76,550	740	1,850	2,910	2,940	67,920	190
Employed full time	50,010	440	1,460	2,170	1,880	43,890	170
Employed part time	18,650	170	260	530	850	16,820	S
Unemployed	440	S	S	S	S	410	S
Retired	5,630	130	S	130	110	5,240	S
Not employed, not seeking work	1,820	S	110	60	70	1,570	S
Social scientist	61,670	600	4,840	3,230	2,140	50,710	160
Employed full time	48,200	470	4,070	2,480	1,840	39,230	110
Employed part time	6,180	50	330	450	170	5,160	S
Unemployed	500	S	S	S	S	390	S
Retired	6,050	80	330	200	100	5,320	S
Not employed, not seeking work	750	S	60	50	S	610	S
Engineering occupations	90,970	340	27,030	1,580	2,060	59,900	S
Employed full time	73,700	320	24,390	1,470	1,820	45,690	S
Employed part time	5,680	S	890	70	60	4,640	S
Unemployed	1,260	S	240	S	S	950	S

TABLE 31. Doctoral scientists and engineers, by broad occupation, employment status, and race/ethnicity: 2006

Employment status and occupation	All	$\begin{array}{r} \text { American } \\ \text { Indian/ } \\ \text { Alaska Native } \end{array}$	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{a}$
Retired	9,490	S	1,270	S	140	8,070	S
Not employed, not seeking work	830	S	240	S	S	550	S
Science and engineering-related occupations	75,140	490	10,820	2,720	1,730	59,200	180
Employed full time	60,950	400	9,390	2,250	1,490	47,250	170
Employed part time	5,160	S	590	260	120	4,140	S
Unemployed	1,100	S	110	70	S	890	S
Retired	6,960	S	500	110	S	6,280	S
Not employed, not seeking work	970	S	230	S	60	640	S
Non-science and engineering occupations	123,550	980	14,710	4,360	3,200	100,120	190
Employed full time	91,210	760	12,170	3,550	2,520	72,080	130
Employed part time	13,720	100	1,130	440	350	11,670	S
Unemployed	1,710	S	280	60	S	1,340	S
Retired	14,520	80	790	270	220	13,160	S
Not employed, not seeking work	2,400	S	350	S	70	1,880	S

S = suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: If respondent was not employed during survey reference period, occupation when last employed was reported. Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Excludes 360 individuals who reported never having worked so could not be classified by occupation. Full time and part time employment status is for the principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 32. Selected employment characteristics of doctoral scientists and engineers, by occupation: 2006
(Rate per 100)

Occupation	Unemployment rate	Involuntarily-out-of-field rate	Labor force participation rate
All occupations	1.4	3.1	88.6
Science occupations	1.2	2.0	89.1
Biological, agricultural, or other life scientist	1.3	0.7	89.7
Agricultural/food scientist	1.2	0.6	86.3
Biochemist/biophysicist	1.6	0.4	90.7
Biological scientist	1.6	1.1	88.4
Forestry/conservation scientist	4.2	S	89.9
Medical scientist	1.3	1.0	93.2
Postsecondary teacher, agricultural/other natural sciences	S	S	82.9
Postsecondary teacher, biological sciences	0.6	S	88.1
Other biological/agricultural/life scientist	1.9	1.1	89.2
Computer and information scientist	1.9	12.6	91.0
Computer/information scientist	2.1	15.2	91.0
Postsecondary teacher, computer science	0.9	3.4	91.2
Mathematical scientist	0.4	2.6	88.7
Mathematical scientist	0.6	5.1	90.3
Postsecondary teacher, mathematics/statistics	S	0.8	87.7
Physical scientist	1.8	1.7	86.5
Chemist, except biochemist	2.9	1.9	84.2
Earth/atmospheric/ocean scientist	1.9	1.8	86.1
Physicist/astronomer	1.7	3.2	88.5
Postsecondary teacher, chemistry	1.8	S	86.2
Postsecondary teacher, physics	S	S	87.0
Postsecondary teacher, other physical sciences	S	S	88.6
Other physical scientist	S	5.5	92.6
Psychologist	0.6	0.3	90.3
Psychologist	0.8	0.3	90.8
Postsecondary teacher, psychology	S	S	88.8
Social scientist	0.9	0.7	89.0
Economist	2.6	S	88.9
Political scientist	S	S	79.6
Postsecondary teacher, economics	0.6	S	88.8
Postsecondary teacher, political science	S	S	88.3
Postsecondary teacher, sociology	S	S	87.6
Postsecondary teacher, other social sciences	0.9	S	88.7
Sociologist/anthropologist	1.3	S	90.6
Other social scientist	0.8	3.8	93.9
Engineering occupations	1.6	2.9	88.7
Aerospace/aeronautical/astronautical engineer	S	4.9	88.8
Chemical engineer	1.4	2.8	85.9
Civil/architectural/sanitary engineer	S	1.9	88.7
Electrical engineer	1.3	4.4	91.3
Materials/metallurgical engineer	S	S	87.7
Mechanical engineer	2.2	3.7	88.0
Postsecondary teacher, engineering	0.6	S	88.6
Other engineer	3.1	3.2	87.6
Science and engineering-related occupations	1.6	3.9	89.4
Health occupation, except postsecondary teacher	1.5	5.7	91.4
Postsecondary teacher, health and related sciences	1.0	0.6	90.2
SEH manager	1.6	2.2	88.4
SEH precollege teacher	4.7	5.7	91.3
SEH technician/technologist	3.3	20.9	80.4

TABLE 32. Selected employment characteristics of doctoral scientists and engineers, by occupation: 2006
(Rate per 100)

Occupation	Unemployment rate	Involuntarily- out-of-field rate	Labor force participation rate
Other SEH-related occupation	S	17.5	82.5
Non-science and engineering occupations	1.6	6.5	86.3
Arts/humanities-related occupation	1.4	9.5	82.6
Management-related occupation	1.8	7.8	89.0
Non-SEH manager	1.0	3.3	86.5
Non-SEH postsecondary teacher	0.9	1.1	87.3
Non-SEH precollege/other teacher	S	7.8	77.9
Sales/marketing occupation	2.9	17.2	87.8
Social service-related occupation	S	3.3	87.2
Other non-SEH occupation	4.4	14.8	81.4

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.

NOTES: Labor force is defined as those employed (E) plus those unemployed and seeking work (U). Population (P) is defined as all SEH doctorate holders less than 76 years of age, residing in the United States during the week of 1 April 2006, who earned doctorates from U.S. institutions. Involuntarily-out-of field rate is percentage of employed individuals who reported working part time exclusively because suitable full-time work was not available and/or reported working in an area not related to first doctoral degree (in their principal job) at least partially because suitable work in the field was not available. Unemployment rate $\left(R_{U}\right)=U /(E+U)$. Labor force participation rate $\left(R_{L F}\right)=(E+U) / P$.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 33. Doctoral scientists and engineers, by occupation and sex: 2006

Occupation	Total	Male	Female	Total	Male	Female
	Number			Percent		
All occupations	711,440	505,390	206,050	100.0	71.0	29.0
Science occupations	421,780	288,480	133,300	100.0	68.4	31.6
Biological, agricultural, or other life scientist	130,960	86,610	44,360	100.0	66.1	33.9
Agricultural/food scientist	10,670	8,540	2,120	100.0	80.1	19.9
Biochemist/biophysicist	16,530	11,200	5,330	100.0	67.8	32.2
Biological scientist	24,220	15,180	9,050	100.0	62.7	37.3
Forestry/conservation scientist	1,920	1,520	410	100.0	78.9	21.1
Medical scientist	38,700	23,990	14,710	100.0	62.0	38.0
Postsecondary teacher, agricultural/other natural sciences	5,390	4,550	840	100.0	84.3	15.7
Postsecondary teacher, biological sciences	28,160	18,760	9,400	100.0	66.6	33.4
Other biological/agricultural/life scientist	5,350	2,860	2,490	100.0	53.4	46.6
Computer and information scientist	37,440	31,940	5,500	100.0	85.3	14.7
Computerlinformation scientist	29,510	25,290	4,230	100.0	85.7	14.3
Postsecondary teacher, computer science	7,930	6,650	1,280	100.0	83.9	16.1
Mathematical scientist	27,420	21,500	5,910	100.0	78.4	21.6
Mathematical scientist	11,000	8,500	2,510	100.0	77.2	22.8
Postsecondary teacher, mathematics/statistics	16,410	13,010	3,400	100.0	79.3	20.7
Physical scientist	87,730	73,590	14,150	100.0	83.9	16.1
Chemist, except biochemist	27,320	22,540	4,780	100.0	82.5	17.5
Earth/atmospheric/ocean scientist	11,520	9,830	1,690	100.0	85.3	14.7
Physicist/astronomer	15,420	14,120	1,300	100.0	91.6	8.4
Postsecondary teacher, chemistry	13,930	10,790	3,140	100.0	77.4	22.6
Postsecondary teacher, physics	9,420	8,230	1,190	100.0	87.4	12.6
Postsecondary teacher, other physical sciences	7,260	5,810	1,450	100.0	80.0	20.0
Other physical scientist	2,880	2,280	600	100.0	79.3	20.7
Psychologist	76,550	35,070	41,480	100.0	45.8	54.2
Psychologist	56,730	24,970	31,760	100.0	44.0	56.0
Postsecondary teacher, psychology	19,810	10,090	9,720	100.0	51.0	49.0
Social scientist	61,670	39,770	21,900	100.0	64.5	35.5
Economist	8,770	6,780	1,990	100.0	77.4	22.6
Political scientist	2,050	1,410	640	100.0	68.6	31.4
Postsecondary teacher, economics	9,780	7,940	1,840	100.0	81.1	18.9
Postsecondary teacher, political science	9,500	7,160	2,340	100.0	75.4	24.6
Postsecondary teacher, sociology	8,610	4,660	3,950	100.0	54.1	45.9
Postsecondary teacher, other social sciences	10,930	6,240	4,700	100.0	57.0	43.0
Sociologist/anthropologist	4,660	2,350	2,310	100.0	50.4	49.6
Other social scientist	7,370	3,240	4,130	100.0	43.9	56.1
Engineering occupations	90,970	81,920	9,040	100.0	90.1	9.9
Aerospace/aeronautical/astronautical engineer	5,940	5,540	400	100.0	93.2	6.8
Chemical engineer	8,280	7,320	950	100.0	88.5	11.5
Civil/architectural/sanitary engineer	4,960	4,470	490	100.0	90.1	9.9
Electrical engineer	20,020	18,330	1,690	100.0	91.6	8.4
Materials/metallurgical engineer	1,050	850	200	100.0	80.6	19.4
Mechanical engineer	9,390	8,870	520	100.0	94.4	5.6
Postsecondary teacher, engineering	19,460	17,500	1,970	100.0	89.9	10.1
Other engineer	21,870	19,050	2,810	100.0	87.1	12.9
Science and engineering-related occupations	75,140	49,420	25,720	100.0	65.8	34.2
Health occupation, except postsecondary teacher	21,870	13,150	8,720	100.0	60.1	39.9
Postsecondary teacher, health and related sciences	18,970	8,910	10,060	100.0	47.0	53.0
SEH manager	26,200	21,180	5,010	100.0	80.9	19.1
SEH precollege teacher	4,080	2,670	1,410	100.0	65.4	34.6
SEH technician/technologist	3,670	3,210	450	100.0	87.6	12.4
Other SEH-related occupation	360	300	60	100.0	83.3	16.7

TABLE 33. Doctoral scientists and engineers, by occupation and sex: 2006

Occupation	Total	Male	Female	Total	Male	Female
	Number			Percent		
Non-science and engineering occupations	123,550	85,580	37,980	100.0	69.3	30.7
Arts/humanities-related occupation	6,350	3,200	3,150	100.0	50.4	49.6
Management-related occupation	25,510	17,300	8,210	100.0	67.8	32.2
Non-SEH manager	48,970	38,060	10,900	100.0	77.7	22.3
Non-SEH postsecondary teacher	14,030	8,890	5,140	100.0	63.4	36.6
Non-SEH precollege/other teacher	3,370	1,380	2,000	100.0	40.8	59.2
Sales/marketing occupation	9,390	6,880	2,520	100.0	73.2	26.8
Social service-related occupation	4,530	2,240	2,300	100.0	49.3	50.7
Other non-SEH occupation	11,390	7,630	3,760	100.0	67.0	33.0

NOTES: If respondent was not employed during survey reference period, occupation when last employed was reported. Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Excludes 360 individuals who reported never having worked so could not be classified by occupation. Full time and part time employment status is for the principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 34. Doctoral scientists and engineers, by occupation and race/ethnicity: 2006

Occupation	All	American Indian/ Alaskan Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
	Number						
All occupations	711,440	4,700	113,990	20,310	19,720	551,540	1,190
Science occupations	421,780	2,890	61,430	11,640	12,730	332,320	780
Biological, agricultural, or other life scientist	130,960	890	22,960	2,800	3,890	100,150	280
Agricultural/food scientist	10,670	90	1,330	380	290	8,580	S
Biochemist/biophysicist	16,530	80	5,140	220	370	10,700	S
Biological scientist	24,220	160	4,230	420	850	18,460	100
Forestry/conservation scientist	1,920	S	80	S	S	1,800	S
Medical scientist	38,700	250	8,700	720	1,000	27,940	80
Postsecondary teacher, agricultural/other natural sciences	5,390	70	340	120	160	4,700	S
Postsecondary teacher, biological sciences	28,160	160	2,000	810	890	24,260	S
Other biological/agricultural/life scientist	5,350	60	1,140	130	280	3,700	S
Computer and information scientist	37,440	120	12,180	510	810	23,800	S
Computer/information scientist	29,510	90	10,120	330	640	18,310	S
Postsecondary teacher, computer science	7,930	S	2,070	180	170	5,490	S
Mathematical scientist	27,420	S	5,850	660	860	20,010	S
Mathematical scientist	11,000	S	3,120	180	320	7,350	S
Postsecondary teacher, mathematics/statistics	16,410	S	2,730	480	540	12,660	S
Physical scientist	87,730	540	13,750	1,530	2,090	69,730	100
Chemist, except biochemist	27,320	120	6,570	470	550	19,580	S
Earth/atmospheric/ocean scientist	11,520	80	1,600	90	300	9,440	S
Physicist/astronomer	15,420	90	2,410	190	370	12,350	S
Postsecondary teacher, chemistry	13,930	160	1,030	530	430	11,760	S
Postsecondary teacher, physics	9,420	70	1,220	100	270	7,760	S
Postsecondary teacher, other physical sciences	7,260	S	370	70	100	6,660	S
Other physical scientist	2,880	S	550	70	60	2,200	S
Psychologist	76,550	740	1,850	2,910	2,940	67,920	190
Psychologist	56,730	570	1,370	1,810	2,050	50,820	120
Postsecondary teacher, psychology	19,810	170	480	1,100	890	17,100	70
Social scientist	61,670	600	4,840	3,230	2,140	50,710	160
Economist	8,770	70	1,280	190	310	6,900	S
Political scientist	2,050	S	200	170	110	1,530	S
Postsecondary teacher, economics	9,780	S	1,070	410	210	8,080	S
Postsecondary teacher, political science	9,500	80	310	500	250	8,340	S
Postsecondary teacher, sociology	8,610	70	390	670	340	7,130	S
Postsecondary teacher, other social sciences	10,930	260	840	470	590	8,730	S
Sociologist/anthropologist	4,660	S	210	210	140	4,020	S
Other social scientist	7,370	S	530	610	190	5,970	S
Engineering occupations	90,970	340	27,030	1,580	2,060	59,900	S
Aerospace/aeronautical/astronautical engineer	5,940	S	1,130	S	100	4,640	S
Chemical engineer	8,280	S	2,630	140	230	5,240	S
Civil/architectural/sanitary engineer	4,960	S	1,580	60	260	3,040	S
Electrical engineer	20,020	70	7,900	170	320	11,550	S
Materials/metallurgical engineer	1,050	S	270	S	S	710	S
Mechanical engineer	9,390	S	3,820	80	100	5,370	S
Postsecondary teacher, engineering	19,460	140	3,640	780	600	14,300	S
Other engineer	21,870	S	6,080	260	420	15,050	S
Science and engineering-related occupations	75,140	490	10,820	2,720	1,730	59,200	180
Health occupation, except postsecondary teacher	21,870	140	3,250	990	600	16,810	80
Postsecondary teacher, health and related sciences	18,970	80	1,640	960	410	15,880	S
SEH manager	26,200	200	4,230	540	470	20,680	70
SEH precollege teacher	4,080	50	330	210	120	3,360	S
SEH technician/technologist	3,670	S	1,230	S	130	2,250	S

TABLE 34. Doctoral scientists and engineers, by occupation and race/ethnicity: 2006

Occupation	All	American Indian/ Alaskan Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Other SEH-related occupation	360	S	130	S	S	220	S
Non-science and engineering occupations	123,550	980	14,710	4,360	3,200	100,120	190
Arts/humanities-related occupation	6,350	S	480	70	140	5,600	S
Management-related occupation	25,510	170	4,490	810	650	19,350	S
Non-SEH manager	48,970	410	5,320	1,760	1,110	40,350	S
Non-SEH postsecondary teacher	14,030	80	1,420	770	590	11,140	S
Non-SEH precollege/other teacher	3,370	S	280	150	80	2,830	S
Sales/marketing occupation	9,390	70	1,360	150	180	7,630	S
Social service-related occupation	4,530	100	270	340	190	3,650	S
Other non-SEH occupation	11,390	90	1,090	310	250	9,570	70
	Percent						
All occupations	100.0	0.7	16.0	2.9	2.8	77.5	0.2
Science occupations	100.0	0.7	14.6	2.8	3.0	78.8	0.2
Biological, agricultural, or other life scientist	100.0	0.7	17.5	2.1	3.0	76.5	0.2
Agricultural/food scientist	100.0	0.8	12.5	3.5	2.7	80.5	S
Biochemist/biophysicist	100.0	0.5	31.1	1.3	2.3	64.7	S
Biological scientist	100.0	0.7	17.5	1.7	3.5	76.2	0.4
Forestry/conservation scientist	100.0	S	4.0	S	S	93.4	S
Medical scientist	100.0	0.7	22.5	1.9	2.6	72.2	0.2
Postsecondary teacher, agricultural/other natural sciences	100.0	1.4	6.2	2.2	3.0	87.1	S
Postsecondary teacher, biological sciences	100.0	0.6	7.1	2.9	3.2	86.2	S
Other biological/agricultural/life scientist	100.0	1.2	21.4	2.5	5.3	69.0	S
Computer and information scientist	100.0	0.3	32.5	1.4	2.2	63.6	S
Computer/information scientist	100.0	0.3	34.3	1.1	2.2	62.0	S
Postsecondary teacher, computer science	100.0	S	26.1	2.3	2.2	69.2	S
Mathematical scientist	100.0	S	21.3	2.4	3.1	73.0	S
Mathematical scientist	100.0	S	28.4	1.6	2.9	66.8	S
Postsecondary teacher, mathematics/statistics	100.0	S	16.6	2.9	3.3	77.1	S
Physical scientist	100.0	0.6	15.7	1.7	2.4	79.5	0.1
Chemist, except biochemist	100.0	0.4	24.0	1.7	2.0	71.7	S
Earth/atmospheric/ocean scientist	100.0	0.7	13.9	0.8	2.6	81.9	S
Physicist/astronomer	100.0	0.6	15.6	1.3	2.4	80.1	S
Postsecondary teacher, chemistry	100.0	1.1	7.4	3.8	3.1	84.4	S
Postsecondary teacher, physics	100.0	0.7	13.0	1.0	2.9	82.4	S
Postsecondary teacher, other physical sciences	100.0	S	5.0	1.0	1.3	91.8	S
Other physical scientist	100.0	S	19.1	2.5	2.2	76.3	S
Psychologist	100.0	1.0	2.4	3.8	3.8	88.7	0.2
Psychologist	100.0	1.0	2.4	3.2	3.6	89.6	0.2
Postsecondary teacher, psychology	100.0	0.9	2.4	5.5	4.5	86.3	0.3
Social scientist	100.0	1.0	7.8	5.2	3.5	82.2	0.3
Economist	100.0	0.8	14.5	2.2	3.6	78.7	S
Political scientist	100.0	S	9.9	8.1	5.3	74.7	S
Postsecondary teacher, economics	100.0	S	11.0	4.1	2.1	82.6	S
Postsecondary teacher, political science	100.0	0.9	3.2	5.3	2.7	87.8	S
Postsecondary teacher, sociology	100.0	0.8	4.6	7.8	3.9	82.8	S
Postsecondary teacher, other social sciences	100.0	2.4	7.7	4.3	5.4	79.8	S
Sociologist/anthropologist	100.0	S	4.6	4.6	3.0	86.3	S
Other social scientist	100.0	S	7.2	8.3	2.6	81.0	S
Engineering occupations	100.0	0.4	29.7	1.7	2.3	65.8	S
Aerospace/aeronautical/astronautical engineer	100.0	S	18.9	S	1.7	78.1	S
Chemical engineer	100.0	S	31.8	1.6	2.8	63.4	S
Civil/architectural/sanitary engineer	100.0	S	31.9	1.1	5.2	61.3	S
Electrical engineer	100.0	0.4	39.4	0.9	1.6	57.7	S

TABLE 34. Doctoral scientists and engineers, by occupation and race/ethnicity: 2006

Occupation	All	American Indian/ Alaskan Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Materials/metallurgical engineer	100.0	S	25.4	S	S	67.9	S
Mechanical engineer	100.0	S	40.6	0.9	1.1	57.2	S
Postsecondary teacher, engineering	100.0	0.7	18.7	4.0	3.1	73.5	S
Other engineer	100.0	S	27.8	1.2	1.9	68.8	S
Science and engineering-related occupations	100.0	0.6	14.4	3.6	2.3	78.8	0.2
Health occupation, except postsecondary teacher	100.0	0.6	14.9	4.5	2.8	76.9	0.4
Postsecondary teacher, health and related sciences	100.0	0.4	8.6	5.1	2.2	83.7	S
SEH manager	100.0	0.8	16.2	2.1	1.8	79.0	0.3
SEH precollege teacher	100.0	1.3	8.1	5.2	3.1	82.3	S
SEH technician/technologist	100.0	S	33.6	S	3.5	61.3	S
Other SEH-related occupation	100.0	S	37.3	S	S	61.6	S
Non-science and engineering occupations	100.0	0.8	11.9	3.5	2.6	81.0	0.2
Arts/humanities-related occupation	100.0	S	7.5	1.1	2.2	88.2	S
Management-related occupation	100.0	0.7	17.6	3.2	2.5	75.9	S
Non-SEH manager	100.0	0.8	10.9	3.6	2.3	82.4	S
Non-SEH postsecondary teacher	100.0	0.6	10.1	5.5	4.2	79.4	S
Non-SEH precollege/other teacher	100.0	S	8.2	4.6	2.4	83.8	S
Sales/marketing occupation	100.0	0.8	14.5	1.6	2.0	81.2	S
Social service-related occupation	100.0	2.1	5.9	7.4	4.2	80.5	S
Other non-SEH occupation	100.0	0.8	9.6	2.7	2.2	84.0	0.6

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Excludes 360 individuals who reported never having worked so could not be classified by occupation.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 35. Doctoral scientists and engineers, by occupation and disability status: 2006

Occupation	All	With disability	Without disability
	Number		
All occupations	711,440	53,310	658,130
Science occupations	421,780	31,630	390,150
Biological, agricultural, or other life scientist	130,960	9,110	121,850
Agricultural/food scientist	10,670	780	9,890
Biochemist/biophysicist	16,530	1,110	15,430
Biological scientist	24,220	1,820	22,400
Forestry/conservation scientist	1,920	190	1,740
Medical scientist	38,700	2,240	36,470
Postsecondary teacher, agricultural/other natural sciences	5,390	600	4,790
Postsecondary teacher, biological sciences	28,160	1,980	26,180
Other biological/agricultura//life scientist	5,350	400	4,960
Computer and information scientist	37,440	2,480	34,960
Computer/information scientist	29,510	1,990	27,530
Postsecondary teacher, computer science	7,930	500	7,430
Mathematical scientist	27,420	2,340	25,080
Mathematical scientist	11,000	760	10,250
Postsecondary teacher, mathematics/statistics	16,410	1,580	14,830
Physical scientist	87,730	6,190	81,540
Chemist, except biochemist	27,320	1,750	25,570
Earth/atmospheric/ocean scientist	11,520	920	10,590
Physicist/astronomer	15,420	1,080	14,340
Postsecondary teacher, chemistry	13,930	1,040	12,890
Postsecondary teacher, physics	9,420	780	8,630
Postsecondary teacher, other physical sciences	7,260	540	6,720
Other physical scientist	2,880	80	2,800
Psychologist	76,550	5,680	70,860
Psychologist	56,730	4,040	52,700
Postsecondary teacher, psychology	19,810	1,650	18,160
Social scientist	61,670	5,820	55,860
Economist	8,770	690	8,070
Political scientist	2,050	370	1,680
Postsecondary teacher, economics	9,780	1,120	8,670
Postsecondary teacher, political science	9,500	690	8,810
Postsecondary teacher, sociology	8,610	1,050	7,550
Postsecondary teacher, other social sciences	10,930	970	9,960
Sociologist/anthropologist	4,660	430	4,230
Other social scientist	7,370	490	6,890
Engineering occupations	90,970	5,990	84,980
Aerospace/aeronautical/astronautical engineer	5,940	410	5,530
Chemical engineer	8,280	330	7,940
Civil/architectural/sanitary engineer	4,960	310	4,650
Electrical engineer	20,020	890	19,130
Materials/metallurgical engineer	1,050	90	960
Mechanical engineer	9,390	920	8,470
Postsecondary teacher, engineering	19,460	1,350	18,120
Other engineer	21,870	1,690	20,180
Science and engineering-related occupations	75,140	5,420	69,730
Health occupation, except postsecondary teacher	21,870	1,690	20,180
Postsecondary teacher, health and related sciences	18,970	1,460	17,520
SEH manager	26,200	1,560	24,640
SEH precollege teacher	4,080	250	3,820
SEH technician/technologist	3,670	440	3,230
Other SEH-related occupation	360	S	340

TABLE 35. Doctoral scientists and engineers, by occupation and disability status: 2006

Occupation	All	With disability	Without disability
Non-science and engineering occupations	123,550	10,280	113,280
Arts/humanities-related occupation	6,350	470	5,880
Management-related occupation	25,510	1,980	23,530
Non-SEH manager	48,970	3,710	45,260
Non-SEH postsecondary teacher	14,030	1,500	12,530
Non-SEH precollege/other teacher	3,370	380	3,000
Sales/marketing occupation	9,390	800	8,600
Social service-related occupation	4,530	450	4,080
Other non-SEH occupation	11,390	1,000	10,400
	Percent		
All occupations	100.0	7.5	92.5
Science occupations	100.0	7.5	92.5
Biological, agricultural, or other life scientist	100.0	7.0	93.0
Agricultural/food scientist	100.0	7.3	92.7
Biochemist/biophysicist	100.0	6.7	93.3
Biological scientist	100.0	7.5	92.5
Forestry/conservation scientist	100.0	9.7	90.3
Medical scientist	100.0	5.8	94.2
Postsecondary teacher, agricultural/other natural sciences	100.0	11.1	88.9
Postsecondary teacher, biological sciences	100.0	7.0	93.0
Other biological/agricultural/life scientist	100.0	7.4	92.6
Computer and information scientist	100.0	6.6	93.4
Computer/information scientist	100.0	6.7	93.3
Postsecondary teacher, computer science	100.0	6.2	93.8
Mathematical scientist	100.0	8.5	91.5
Mathematical scientist	100.0	6.9	93.1
Postsecondary teacher, mathematics/statistics	100.0	9.6	90.4
Physical scientist	100.0	7.1	92.9
Chemist, except biochemist	100.0	6.4	93.6
Earth/atmospheric/ocean scientist	100.0	8.0	92.0
Physicist/astronomer	100.0	7.0	93.0
Postsecondary teacher, chemistry	100.0	7.5	92.5
Postsecondary teacher, physics	100.0	8.3	91.7
Postsecondary teacher, other physical sciences	100.0	7.4	92.6
Other physical scientist	100.0	2.7	97.3
Psychologist	100.0	7.4	92.6
Psychologist	100.0	7.1	92.9
Postsecondary teacher, psychology	100.0	8.3	91.7
Social scientist	100.0	9.4	90.6
Economist	100.0	7.9	92.1
Political scientist	100.0	18.2	81.8
Postsecondary teacher, economics	100.0	11.4	88.6
Postsecondary teacher, political science	100.0	7.3	92.7
Postsecondary teacher, sociology	100.0	12.2	87.8
Postsecondary teacher, other social sciences	100.0	8.9	91.1
Sociologist/anthropologist	100.0	9.2	90.8
Other social scientist	100.0	6.6	93.4
Engineering occupations	100.0	6.6	93.4
Aerospace/aeronautical/astronautical engineer	100.0	6.8	93.2
Chemical engineer	100.0	4.0	96.0
Civil/architectural/sanitary engineer	100.0	6.2	93.8
Electrical engineer	100.0	4.4	95.6
Materials/metallurgical engineer	100.0	8.8	91.2
Mechanical engineer	100.0	9.8	90.2

TABLE 35. Doctoral scientists and engineers, by occupation and disability status: 2006

Occupation	All	With disability	Without disability
Postsecondary teacher, engineering	100.0	6.9	93.1
Other engineer	100.0	7.7	92.3
Science and engineering-related occupations	100.0	7.2	92.8
Health occupation, except postsecondary teacher	100.0	7.7	92.3
Postsecondary teacher, health and related sciences	100.0	7.7	92.3
SEH manager	100.0	6.0	94.0
SEH precollege teacher	100.0	6.2	93.8
SEH technician/technologist	100.0	11.9	88.1
Other SEH-related occupation	100.0	5	93.6
Non-science and engineering occupations	100.0	8.3	91.7
Arts/humanities-related occupation	100.0	7.4	92.6
Management-related occupation	100.0	7.8	92.2
Non-SEH manager	100.0	7.6	92.4
Non-SEH postsecondary teacher	100.0	10.7	89.3
Non-SEH precollege/other teacher	100.0	11.2	88.8
Sales/marketing occupation	100.0	8.5	91.5
Social service-related occupation	100.0	9.9	90.1
Other non-SEH occupation	100.0	8.7	91.3

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health .
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. Excludes 360 individuals who reported never having worked so could not be classified by occupation. The SESTAT surveys ask the degree of difficulty—none, slight, moderate, severe, or unable to do-an individual has in seeing (with glasses), hearing (with hearing aid), walking without assistance, or lifting 10 pounds. Those respondents who answered "moderate," "severe," or "unable to do" for any activity were classified as having a disability.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 36. Doctoral scientists and engineers employed as postdocs, by occupation: 2006

Occupation	Number	Percent
Total in postdoc ${ }^{\text {a }}$	29,890	100.0
Science occupations	25,580	85.6
Biological, agricultural, or other life scientist	17,300	57.9
Agricultural/food scientist	500	1.7
Biochemist/biophysicist	3,940	13.2
Biological scientist	4,750	15.9
Forestry/conservation scientist	90	0.3
Medical scientist	6,560	21.9
Postsecondary teacher, agricultural/other natural sciences	S	S
Postsecondary teacher, biological sciences	300	1.0
Other biological/agricultural/life scientist	1,160	3.9
Computer and information scientist	230	0.8
Computer/information scientist	230	0.8
Postsecondary teacher, computer science	S	S
Mathematical scientist	1,160	3.9
Mathematical scientist	660	2.2
Postsecondary teacher, mathematics/statistics	500	1.7
Physical scientist	4,340	14.5
Chemist, except biochemist	1,550	5.2
Earth/atmospheric/ocean scientist	840	2.8
Physicist/astronomer	1,530	5.1
Postsecondary teacher, chemistry	S	S
Postsecondary teacher, physics	90	0.3
Postsecondary teacher, other physical sciences	S	S
Other physical scientist	250	0.8
Psychologist	1,410	4.7
Psychologist	1,290	4.3
Postsecondary teacher, psychology	110	0.4
Social scientist	1,140	3.8
Economist	S	S
Political scientist	120	0.4
Postsecondary teacher, economics	S	S
Postsecondary teacher, political science	160	0.5
Postsecondary teacher, sociology	S	S
Postsecondary teacher, other social sciences	160	0.5
Sociologist/anthropologist	250	0.8
Other social scientist	370	1.2
Engineering occupations	2,550	8.5
Aerospace/aeronautical/astronautical engineer	70	0.2
Chemical engineer	320	1.1
Civil/architectural/sanitary engineer	S	S
Electrical engineer	410	1.4
Materials/metallurgical engineer	S	S
Mechanical engineer	410	1.4
Postsecondary teacher, engineering	60	0.2
Other engineer	1,260	4.2
Science and engineering-related occupations	1,510	5.1
Health occupation, except postsecondary teacher	1,250	4.2
Postsecondary teacher, health and related sciences	150	0.5
SEH manager	S	S
SEH precollege teacher	S	S
SEH technician/technologist	90	0.3
Other SEH-related occupation	S	S

TABLE 36. Doctoral scientists and engineers employed as postdocs, by occupation: 2006

Occupation	Number	Percent
Non-science and engineering occupations	250	0.8
Arts/humanities-related occupation	S	S
Management-related occupation	S	S
Non-SEH manager	S	S
Non-SEH postsecondary teacher	130	0.4
Non-SEH precollege/other teacher	S	S
Sales/marketing occupation	S	S
Social service-related occupation	70	0.2
Other non-SEH occupation	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{a}$ A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006).

NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 37. Employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

Occupation	All employed			Asian			Other minority ${ }^{\text {a }}$			White		
	Total	Male	Female									
	Number											
All occupations	621,630	438,910	182,730	105,840	79,230	26,610	42,200	25,320	16,880	473,610	334,370	139,250
Science occupations	371,210	252,470	118,750	57,280	39,920	17,370	25,800	15,100	10,710	288,140	197,470	90,680
Biological, agricultural, or other life scientist	116,010	76,350	39,660	21,640	13,190	8,460	7,240	4,430	2,820	87,140	58,750	28,400
Agricultural/food scientist	9,100	7,170	1,940	1,250	770	490	690	560	140	7,160	5,840	1,320
Biochemist/biophysicist	14,760	10,340	4,420	4,800	3,050	1,760	650	420	240	9,310	6,890	2,430
Biological scientist	21,080	13,230	7,850	3,980	2,040	1,940	1,410	870	550	15,700	10,330	5,370
Forestry/conservation scientist	1,660	1,260	410	80	70	S	60	S	S	1,530	1,170	370
Medical scientist	35,610	22,120	13,490	8,300	5,340	2,970	1,870	990	880	25,450	15,800	9,650
Postsecondary teacher, agricultural/other natural sciences	4,480	3,660	820	320	230	100	350	260	100	3,820	3,190	640
Postsecondary teacher, biological sciences	24,670	16,150	8,520	1,850	1,230	620	1,820	1,100	720	21,010	13,830	7,190
Other biological/agriculturallife scientist	4,690	2,450	2,240	1,080	490	590	420	230	200	3,190	1,730	1,460
Computer and information scientist	33,460	28,700	4,760	11,420	9,480	1,950	1,400	1,170	240	20,650	18,070	2,580
Computer/information scientist	26,290	22,710	3,580	9,430	7,850	1,590	1,060	890	170	15,810	13,980	1,840
Postsecondary teacher, computer science	7,180	6,000	1,180	1,990	1,630	370	350	280	80	4,840	4,100	750
Mathematical scientist	24,230	18,870	5,370	5,550	4,010	1,550	1,490	1,090	400	17,200	13,780	3,420
Mathematical scientist	9,870	7,520	2,360	3,040	2,080	960	530	390	140	6,320	5,060	1,270
Postsecondary teacher, mathematics/statistics	14,360	11,350	3,010	2,520	1,930	590	970	700	270	10,890	8,730	2,160
Physical scientist	74,500	62,240	12,260	12,560	10,140	2,430	3,870	3,030	840	58,080	49,080	9,010
Chemist, except biochemist	22,340	18,320	4,020	5,810	4,480	1,330	1,090	810	280	15,450	13,040	2,410
Earth/atmospheric/ocean scientist	9,730	8,290	1,450	1,460	1,180	280	450	380	80	7,830	6,740	1,100
Physicist/astronomer	13,410	12,280	1,140	2,250	1,980	270	600	480	120	10,580	9,820	760
Postsecondary teacher, chemistry	11,800	9,140	2,670	980	760	220	980	740	250	9,850	7,640	2,210
Postsecondary teacher, physics	8,170	7,070	1,110	1,160	990	170	440	410	S	6,580	5,680	910
Postsecondary teacher, other physical sciences	6,440	5,070	1,380	370	300	70	230	160	80	5,840	4,610	1,230
Other physical scientist	2,640	2,110	530	560	470	90	100	80	S	1,990	1,580	410
Psychologist	68,660	31,870	36,800	1,730	470	1,270	6,230	2,180	4,060	60,710	29,230	31,490
Psychologist	51,090	23,030	28,060	1,280	300	980	4,160	1,460	2,700	45,670	21,280	24,390
Postsecondary teacher, psychology	17,580	8,840	8,740	460	180	290	2,080	730	1,360	15,050	7,950	7,100
Social scientist	54,380	34,460	19,920	4,410	2,660	1,750	5,590	3,230	2,370	44,390	28,590	15,810
Economist	7,600	5,790	1,820	1,180	820	360	450	370	90	5,980	4,610	1,370
Political scientist	1,610	1,040	570	120	70	60	270	150	130	1,220	830	390
Postsecondary teacher, economics	8,640	6,970	1,670	1,020	730	290	630	520	110	7,010	5,730	1,290
Postsecondary teacher, political science	8,390	6,240	2,160	260	160	100	760	560	200	7,380	5,520	1,860
Postsecondary teacher, sociology	7,520	3,990	3,530	380	210	180	980	470	510	6,160	3,320	2,850
Postsecondary teacher, other social sciences	9,610	5,300	4,320	760	410	360	1,280	630	660	7,580	4,270	3,310
Sociologist/anthropologist	4,170	2,150	2,020	200	80	130	390	230	170	3,580	1,850	1,740
Other social scientist	6,880	3,020	3,860	520	200	320	860	340	530	5,510	2,490	3,030

TABLE 37. Employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

Occupation	All employed			Asian			Other minority ${ }^{\text {a }}$			White		
	Total	Male	Female									
Engineering occupations	79,390	71,240	8,150	25,290	22,220	3,070	3,780	3,190	590	50,340	45,850	4,500
Aerospace/aeronautical/astronautical engineer	5,250	4,900	360	1,050	1,020	S	180	120	70	4,030	3,770	260
Chemical engineer	7,020	6,200	820	2,420	2,060	370	360	310	60	4,250	3,840	410
Civil/architectural/sanitary engineer	4,380	3,970	410	1,420	1,290	130	330	320	S	2,640	2,370	270
Electrical engineer	18,050	16,430	1,630	7,630	6,610	1,020	540	440	100	9,890	9,380	510
Materials/metallurgical engineer	920	800	130	270	250	S	80	S	S	590	510	80
Mechanical engineer	8,090	7,660	440	3,490	3,260	230	180	180	S	4,430	4,230	210
Postsecondary teacher, engineering	17,150	15,280	1,870	3,430	3,080	360	1,440	1,270	180	12,290	10,950	1,340
Other engineer	18,560	16,030	2,530	5,610	4,690	930	690	530	160	12,260	10,820	1,450
Science and engineering-related occupations	66,110	43,130	22,990	9,980	7,260	2,730	4,750	2,530	2,220	51,390	33,350	18,050
Health occupation, except postsecondary teacher	19,690	11,880	7,820	3,060	1,950	1,120	1,670	830	850	14,970	9,110	5,870
Postsecondary teacher, health and related sciences	16,950	7,950	9,000	1,500	940	570	1,360	560	800	14,090	6,460	7,630
SEH manager	22,790	18,160	4,640	3,940	3,270	680	1,210	810	410	17,640	14,090	3,560
SEH precollege teacher	3,550	2,350	1,200	280	150	130	360	230	140	2,920	1,990	940
SEH technician/technologist	2,860	2,530	330	1,120	890	230	150	120	S	1,600	1,540	70
Other SEH-related occupation	300	270	S	110	90	S	S	S	S	190	190	S
Non-science and engineering occupations	104,930	72,080	32,860	13,300	9,850	3,450	7,890	4,520	3,370	83,760	57,720	26,040
Arts/humanities-related occupation	5,180	2,540	2,640	380	120	260	270	170	110	4,530	2,260	2,280
Management-related occupation	22,300	15,070	7,230	4,220	2,950	1,280	1,470	770	700	16,620	11,370	5,260
Non-SEH manager	41,930	32,200	9,730	4,650	4,080	580	2,940	1,920	1,030	34,340	26,210	8,140
Non-SEH postsecondary teacher	12,140	7,610	4,540	1,360	800	560	1,380	680	710	9,420	6,140	3,280
Non-SEH precollege/other teacher	2,610	1,040	1,580	270	140	140	240	80	170	2,100	820	1,290
Sales/marketing occupation	8,020	5,950	2,070	1,260	1,060	200	370	210	170	6,400	4,690	1,710
Social service-related occupation	3,950	1,810	2,140	260	140	130	570	320	260	3,120	1,360	1,770
Other non-SEH occupation	8,960	5,970	3,000	1,020	660	370	800	490	310	7,360	4,970	2,390
	Percent											
All occupations	100.0	70.7	29.4	100.0	74.9	25.2	100.0	60.1	40.0	100.0	70.6	29.4
Science occupations	100.0	68.1	32.0	100.0	69.7	30.4	100.0	58.6	41.5	100.0	68.6	31.5
Biological, agricultural, or other life scientist	100.0	65.9	34.2	100.0	61.0	39.1	100.0	61.2	38.9	100.0	67.5	32.6
Agricultural/food scientist	100.0	78.8	21.3	100.0	61.5	38.6	100.0	80.9	19.2	100.0	81.6	18.5
Biochemist/biophysicist	100.0	70.1	30.0	100.0	63.5	36.6	100.0	63.8	36.3	100.0	74.0	26.1
Biological scientist	100.0	62.8	37.3	100.0	51.3	48.8	100.0	61.4	38.7	100.0	65.8	34.2
Forestry/conservation scientist	100.0	75.5	24.6	100.0	80.3	S	100.0	S	S	100.0	76.2	23.9
Medical scientist	100.0	62.2	37.9	100.0	64.3	35.8	100.0	53.0	47.1	100.0	62.1	38.0
Postsecondary teacher, agricultural/other natural sciences	100.0	81.8	18.3	100.0	70.6	29.5	100.0	73.7	26.4	100.0	83.5	16.6
Postsecondary teacher, biological sciences	100.0	65.5	34.6	100.0	66.7	33.4	100.0	60.4	39.7	100.0	65.8	34.2
Other biological/agricultural/life scientist	100.0	52.3	47.8	100.0	45.4	54.7	100.0	54.7	45.4	100.0	54.4	45.7
Computer and information scientist	100.0	85.8	14.3	100.0	83.0	17.1	100.0	83.0	17.1	100.0	87.6	12.5
Computer/information scientist	100.0	86.4	13.7	100.0	83.3	16.8	100.0	84.1	16.0	100.0	88.5	11.6
Postsecondary teacher, computer science	100.0	83.6	16.4	100.0	81.9	18.2	100.0	79.5	20.6	100.0	84.7	15.4

TABLE 37. Employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

	All employed			Asian			Other minority ${ }^{\text {a }}$			White		
Occupation	Total	Male	Female									
Mathematical scientist	100.0	77.9	22.2	100.0	72.2	27.9	100.0	73.2	26.8	100.0	80.2	19.9
Mathematical scientist	100.0	76.2	23.9	100.0	68.5	31.6	100.0	74.1	26.0	100.0	80.1	20.0
Postsecondary teacher, mathematics/statistics	100.0	79.1	21.0	100.0	76.6	23.5	100.0	72.8	27.3	100.0	80.2	19.9
Physical scientist	100.0	83.6	16.5	100.0	80.8	19.3	100.0	78.4	21.7	100.0	84.5	15.5
Chemist, except biochemist	100.0	82.1	18.0	100.0	77.2	22.9	100.0	74.3	25.8	100.0	84.5	15.6
Earth/atmospheric/ocean scientist	100.0	85.2	14.9	100.0	80.9	19.2	100.0	84.1	15.9	100.0	86.1	14.0
Physicist/astronomer	100.0	91.6	8.5	100.0	88.1	12.0	100.0	81.0	19.1	100.0	92.9	7.2
Postsecondary teacher, chemistry	100.0	77.4	22.6	100.0	77.8	22.3	100.0	75.3	24.8	100.0	77.6	22.5
Postsecondary teacher, physics	100.0	86.6	13.5	100.0	85.4	14.7	100.0	93.1	S	100.0	86.3	13.8
Postsecondary teacher, other physical sciences	100.0	78.7	21.4	100.0	81.0	19.1	100.0	67.9	32.1	100.0	79.0	21.1
Other physical scientist	100.0	80.2	19.9	100.0	83.8	16.3	100.0	72.1	S	100.0	79.5	20.5
Psychologist	100.0	46.5	53.6	100.0	27.1	73.0	100.0	35.0	65.1	100.0	48.2	51.9
Psychologist	100.0	45.1	55.0	100.0	23.2	76.9	100.0	35.1	65.0	100.0	46.6	53.4
Postsecondary teacher, psychology	100.0	50.3	49.7	100.0	37.9	62.2	100.0	34.8	65.3	100.0	52.9	47.2
Social scientist	100.0	63.4	36.7	100.0	60.3	39.8	100.0	57.7	42.4	100.0	64.4	35.7
Economist	100.0	76.2	23.9	100.0	69.9	30.2	100.0	80.4	19.7	100.0	77.1	23.0
Political scientist	100.0	64.5	35.5	100.0	55.6	44.5	100.0	52.8	47.3	100.0	68.0	32.1
Postsecondary teacher, economics	100.0	80.7	19.3	100.0	72.3	27.8	100.0	83.1	17.0	100.0	81.8	18.3
Postsecondary teacher, political science	100.0	74.4	25.7	100.0	62.1	38.0	100.0	73.7	26.4	100.0	74.9	25.2
Postsecondary teacher, sociology	100.0	53.1	47.0	100.0	53.9	46.2	100.0	48.0	52.0	100.0	53.9	46.2
Postsecondary teacher, other social sciences	100.0	55.1	45.0	100.0	52.9	47.2	100.0	49.0	51.1	100.0	56.4	43.7
Sociologist/anthropologist	100.0	51.5	48.6	100.0	39.1	61.0	100.0	57.8	42.2	100.0	51.5	48.6
Other social scientist	100.0	43.9	56.2	100.0	38.9	61.2	100.0	38.8	61.3	100.0	45.1	55.0
Engineering occupations	100.0	89.8	10.3	100.0	87.9	12.2	100.0	84.4	15.7	100.0	91.1	9.0
Aerospace/aeronautical/astronautical engineer	100.0	93.3	6.7	100.0	97.1	S	100.0	65.6	34.5	100.0	93.6	6.5
Chemical engineer	100.0	88.4	11.7	100.0	85.0	15.1	100.0	85.5	14.5	100.0	90.6	9.5
Civil/architectural/sanitary engineer	100.0	90.8	9.3	100.0	91.1	9.0	100.0	96.7	S	100.0	89.9	10.2
Electrical engineer	100.0	91.1	9.0	100.0	86.7	13.4	100.0	81.7	18.4	100.0	94.9	5.1
Materials/metallurgical engineer	100.0	86.3	13.8	100.0	92.0	S	100.0	S	S	100.0	86.7	13.4
Mechanical engineer	100.0	94.7	5.4	100.0	93.5	6.6	100.0	95.9	S	100.0	95.5	4.6
Postsecondary teacher, engineering	100.0	89.2	10.9	100.0	89.7	10.4	100.0	88.1	12.0	100.0	89.1	11.0
Other engineer	100.0	86.5	13.6	100.0	83.6	16.5	100.0	76.8	23.3	100.0	88.3	11.8
Science and engineering-related occupations	100.0	65.3	34.8	100.0	72.7	27.4	100.0	53.3	46.8	100.0	64.9	35.2
Health occupation, except postsecondary teacher	100.0	60.3	39.7	100.0	63.6	36.5	100.0	49.7	50.4	100.0	60.9	39.2
Postsecondary teacher, health and related sciences	100.0	47.0	53.1	100.0	62.5	37.6	100.0	41.3	58.8	100.0	45.9	54.2
SEH manager	100.0	79.7	20.4	100.0	83.0	17.1	100.0	66.3	33.8	100.0	79.9	20.2
SEH precollege teacher	100.0	66.3	33.8	100.0	52.4	47.7	100.0	62.2	37.9	100.0	68.1	32.0
SEH technician/technologist	100.0	88.8	11.3	100.0	79.5	20.5	100.0	78.2	S	100.0	96.2	3.9
Other SEH-related occupation	100.0	90.9	S	100.0	77.8	S	100.0	S	S	100.0	100.0	S

TABLE 37. Employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

Occupation	All employed			Asian			Other minority ${ }^{\text {a }}$			White		
	Total	Male	Female									
Non-science and engineering occupations	100.0	68.7	31.4	100.0	74.1	26.0	100.0	57.3	42.7	100.0	69.0	31.1
Arts/humanities-related occupation	100.0	49.1	51.0	100.0	31.6	68.5	100.0	61.2	38.9	100.0	49.8	50.3
Management-related occupation	100.0	67.6	32.4	100.0	69.8	30.3	100.0	52.3	47.8	100.0	68.4	31.7
Non-SEH manager	100.0	76.8	23.2	100.0	87.8	12.3	100.0	65.2	34.9	100.0	76.4	23.7
Non-SEH postsecondary teacher	100.0	62.7	37.4	100.0	58.9	41.2	100.0	49.0	51.1	100.0	65.2	34.9
Non-SEH precollege/other teacher	100.0	39.6	60.5	100.0	51.6	48.5	100.0	31.8	68.2	100.0	39.0	61.1
Sales/marketing occupation	100.0	74.3	25.8	100.0	84.3	15.8	100.0	55.6	44.5	100.0	73.4	26.7
Social service-related occupation	100.0	45.8	54.3	100.0	53.0	47.1	100.0	55.7	44.4	100.0	43.4	56.7
Other non-SEH occupation	100.0	66.6	33.5	100.0	63.1	37.0	100.0	60.9	39.1	100.0	67.6	32.5

SEH = science, engineering and health.
${ }^{a}$ Other minority includes American Indian/Alaska Native, black, Hispanic, Native Hawaiian/Other Pacific Islander and non-Hispanic respondents reporting more than one race. Detail for other minority can be found in table 38.

NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	All employed other minority ${ }^{\text {a }}$			American Indian/ Alaska Native			Black			Hispanic			Native Hawaiian/Other Pacific Islander		
	Total	Male	Female												
Other social scientist	860	340	530	S	S	S	610	230	380	190	80	110	S	S	S
Engineering occupations	3,780	3,190	590	350	300	60	1,540	1,270	280	1,880	1,620	270	S	S	S
Aerospace/aeronautical/astronautical engineer	180	120	70	S	S	S	S	S	S	100	80	S	S	S	S
Chemical engineer	360	310	60	S	S	S	140	120	S	190	170	S	S	S	S
Civil/architectural/sanitary engineer	330	320	S	S	S	S	60	60	S	250	240	S	S	S	S
Electrical engineer	540	440	100	80	S	S	170	150	S	300	240	60	S	S	S
Materials/metallurgical engineer	80	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Mechanical engineer	180	180	S	S	S	S	70	70	S	100	90	S	S	S	S
Postsecondary teacher, engineering	1,440	1,270	180	140	130	S	780	680	110	530	470	60	S	S	S
Other engineer	690	530	160	S	S	S	260	170	90	410	340	80	S	S	S
Science and engineering-related occupations	4,750	2,530	2,220	450	270	190	2,510	1,240	1,280	1,620	920	700	160	90	80
Health occupation, except postsecondary teacher	1,670	830	850	140	100	S	930	420	520	530	280	250	80	S	S
Postsecondary teacher, health and related sciences	1,360	560	800	70	S	70	880	350	530	410	210	210	S	S	S
SEH manager	1,210	810	410	180	130	60	510	360	160	460	300	170	S	S	S
SEH precollege teacher	360	230	140	60	S	S	190	130	70	120	80	S	S	S	S
SEH technician/technologist	150	120	S	S	S	S	S	S	S	100	70	S	S	S	S
Other SEH-related occupation	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Non-science and engineering occupations	7,890	4,520	3,370	860	570	300	4,000	2,160	1,840	2,880	1,700	1,180	100	60	S
Arts/humanities-related occupation	270	170	110	S	S	S	70	S	S	140	90	60	S	S	S
Management-related occupation	1,470	770	700	160	100	70	740	330	410	530	310	230	S	S	S
Non-SEH manager	2,940	1,920	1,030	340	280	70	1,620	940	680	970	700	280	S	S	S
Non-SEH postsecondary teacher	1,380	680	710	80	60	S	710	360	350	590	250	340	S	S	S
Non-SEH precollege/other teacher	240	80	170	S	S	S	140	60	90	80	S	60	S	S	S
Sales/marketing occupation	370	210	170	80	S	60	140	80	70	160	110	S	S	S	S
Social service-related occupation	570	320	260	80	S	S	320	190	130	190	100	100	S	S	S
Other non-SEH occupation	800	490	310	200	160	S	400	240	160	350	210	140	130	70	70
	Percent														
All occupations	100.0	60.1	40.0	100.0	66.7	33.4	100.0	56.2	43.9	100.0	62.4	37.7	100.0	64.2	35.9
Science occupations	100.0	58.6	38.9	100.0	65.9	34.2	100.0	54.8	45.3	100.0	60.1	40.0	100.0	65.2	34.9
Biological, agricultural, or other life scientist	100.0	61.2	19.2	100.0	69.0	31.1	100.0	59.5	40.6	100.0	60.9	39.2	100.0	54.8	45.3
Agricultural/food scientist	100.0	80.9	36.3	100.0	57.9	S	100.0	91.1	S	100.0	76.0	24.1	S	S	S
Biochemist/biophysicist	100.0	63.8	38.7	100.0	69.2	S	100.0	57.3	42.8	100.0	66.5	33.6	S	S	S
Biological scientist	100.0	61.4	52.4	100.0	89.2	S	100.0	48.5	51.6	100.0	64.5	35.6	S	S	S
Forestry/conservation scientist	100.0	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Medical scientist	100.0	53.0	26.4	100.0	46.9	53.2	100.0	377.0	41.9	100.0	50.3	49.8	100.0	S	S
Postsecondary teacher, agricultural/other natural sciences	100.0	73.7	39.7	100.0	100.0	S	100.0	64.7	S	100.0	67.7	32.4	S	S	S

Occupation	All employed other minority ${ }^{\text {a }}$			American Indian/ Alaska Native			Black			Hispanic			Native Hawaiian/Other Pacific Islander		
	Total	Male	Female												
Postsecondary teacher, biological sciences	100.0	60.4	45.4	100.0	77.7	S	100.0	51.8	48.3	100.0	63.9	36.2	S	S	S
Other biological/agricultural/ life scientist	100.0	54.7	17.1	100.0	S	S	100.0	62.3	37.8	100.0	52.9	47.2	S	S	S
Computer and information scientist	100.0	83.0	17.1	100.0	85.2	S	100.0	76.2	23.9	100.0	86.7	13.4	S	S	S
Computer/information scientist	100.0	84.1	16.0	100.0	85.2	S	100.0	83.0	17.1	100.0	84.2	15.9	S	S	S
Postsecondary teacher, computer science	100.0	79.5	20.6	S	S	S	100.0	64.2	35.9	100.0	96.0	S	S	S	S
Mathematical scientist	100.0	73.2	26.8	S	S	S	100.0	62.8	37.3	100.0	80.1	20.0	S	S	S
Mathematical scientist	100.0	74.1	26.0	S	S	S	100.0	58.8	41.3	100.0	80.6	19.5	S	S	S
Postsecondary teacher, mathematics/statistics	100.0	72.8	27.3	S	S	S	100.0	64.4	35.7	100.0	79.8	20.2	S	S	S
Physical scientist	100.0	78.4	21.7	100.0	83.0	17.1	100.0	76.2	23.9	100.0	79.2	20.9	100.0	S	S
Chemist, except biochemist	100.0	74.3	25.8	100.0	100.0	S	100.0	68.6	31.5	100.0	76.5	23.6	S	S	S
Earth/atmospheric/ocean scientist	100.0	84.1	15.9	100.0	66.1	S	100.0	88.7	S	100.0	87.7	S	S	S	S
Physicist/astronomer	100.0	81.0	19.1	100.0	58.8	S	100.0	85.4	S	100.0	84.0	16.1	S	S	S
Postsecondary teacher, chemistry	100.0	75.3	24.8	100.0	100.0	S	100.0	74.5	25.6	100.0	72.7	27.4	S	S	S
Postsecondary teacher, physics	100.0	93.1	S	100.0	100.0	S	100.0	91.2	S	100.0	91.9	S	S	S	S
Postsecondary teacher, other physical sciences	100.0	67.9	32.1	S	S	S	100.0	75.4	S	100.0	54.0	S	S	S	S
Other physical scientist	100.0	72.1	S	S	S	S	100.0	83.6	S	S	S	S	S	S	S
Psychologist	100.0	35.0	65.1	100.0	44.7	55.4	100.0	32.7	67.4	100.0	33.8	66.3	100.0	54.7	S
Psychologist	100.0	35.1	65.0	100.0	47.6	52.5	100.0	32.7	67.4	100.0	32.2	67.9	100.0	66.8	S
Postsecondary teacher, psychology	100.0	34.8	65.3	100.0	35.6	64.5	100.0	32.8	67.3	100.0	37.5	62.6	S	S	S
Social scientist	100.0	57.7	42.4	100.0	68.0	32.0	100.0	55.0	45.1	100.0	58.0	42.1	100.0	75.2	S
Economist	100.0	80.4	19.7	S	S	S	100.0	68.5	S	100.0	82.3	S	S	S	S
Political scientist	100.0	52.8	47.3	S	S	S	100.0	52.5	47.6	100.0	58.5	S	S	S	S
Postsecondary teacher, economics	100.0	83.1	17.0	S	S	S	100.0	83.2	16.9	100.0	81.4	S	S	S	S
Postsecondary teacher, political science	100.0	73.7	26.4	100.0	90.5	S	100.0	77.8	22.3	100.0	65.7	34.4	S	S	S
Postsecondary teacher, sociology	100.0	48.0	52.0	100.0	S	S	100.0	46.6	53.5	100.0	45.1	55.0	S	S	S
Postsecondary teacher, other social sciences	100.0	49.0	51.1	100.0	71.3	28.8	100.0	36.7	63.4	100.0	49.8	50.3	S	S	S
Sociologist/anthropologist	100.0	57.8	42.2	S	S	S	100.0	55.2	44.9	100.0	49.9	50.2	S	S	S
Other social scientist	100.0	38.8	61.3	S	S	S	100.0	37.5	62.6	100.0	42.8	57.3	S	S	S
Engineering occupations	100.0	84.4	15.7	100.0	84.6	15.5	100.0	82.5	17.6	100.0	85.9	14.1	S	S	S
Aerospace/aeronautical/astronautical engineer	100.0	65.6	34.5	S	S	S	S	S	S	100.0	70.8	S	S	S	S
Chemical engineer	100.0	85.5	14.5	S	S	S	100.0	84.5	S	100.0	89.7	S	S	S	S
Civil/architectural/sanitary engineer	100.0	96.7	S	S	S	S	100.0	100.0	S	100.0	95.6	S	S	S	S
Electrical engineer	100.0	81.7	18.4	100.0	S	S	100.0	89.1	S	100.0	81.1	19.0	S	S	S
Materials/metallurgical engineer	100.0	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Mechanical engineer	100.0	95.9	S	S	S	S	100.0	100.0	S	100.0	92.2	S	S	S	S
Postsecondary teacher, engineering	100.0	88.1	12.0	100.0	96.0	S	100.0	86.1	14.0	100.0	88.9	11.2	S	S	S
Other engineer	100.0	76.8	23.3	S	S	S	100.0	66.0	34.1	100.0	82.1	18.0	S	S	S

Occupation	All employed other minority ${ }^{\text {a }}$			American Indian/ Alaska Native			Black			Hispanic			Native Hawaiian/Other Pacific Islander		
	Total	Male	Female												
Science and engineering-related occupations	100.0	53.3	46.8	100.0	59.4	40.7	100.0	49.3	50.8	100.0	56.9	43.2	100.0	60.5	39.6
Health occupation, except postsecondary teacher	100.0	49.7	50.4	100.0	69.1	S	100.0	44.4	55.7	100.0	52.9	47.2	100.0	S	S
Postsecondary teacher, health and related sciences	100.0	41.3	58.8	100.0	S	100.0	100.0	39.7	60.3	100.0	49.8	50.2	S	S	S
SEH manager	100.0	66.3	33.8	100.0	70.2	29.9	100.0	69.3	30.8	100.0	64.3	35.7	S	S	S
SEH precollege teacher	100.0	62.2	37.9	100.0	S	S	100.0	64.8	35.2	100.0	60.3	S	S	S	S
SEH technician/technologist	100.0	78.2	S	S	S	S	S	S	S	100.0	68.3	S	S	S	S
Other SEH-related occupation	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Non-science and engineering occupations	100.0	57.3	42.7	100.0	65.9	34.2	100.0	54.0	46.1	100.0	59.2	40.9	100.0	62.3	S
Arts/humanities-related occupation	100.0	61.2	38.9	S	S	S	100.0	S	S	100.0	60.1	40.0	S	S	S
Management-related occupation	100.0	52.3	47.8	100.0	58.7	41.4	100.0	44.6	55.5	100.0	57.8	42.3	S	S	S
Non-SEH manager	100.0	65.2	34.9	100.0	81.2	18.9	100.0	58.0	42.1	100.0	71.9	28.2	S	S	S
Non-SEH postsecondary teacher	100.0	49.0	51.1	100.0	71.7	S	100.0	50.9	49.2	100.0	42.7	57.3	S	S	S
Non-SEH precollege/other teacher	100.0	31.8	68.2	S	S	S	100.0	37.2	62.8	100.0	S	67.2	S	S	S
Sales/marketing occupation	100.0	55.6	44.5	100.0	S	70.4	100.0	54.4	45.7	100.0	69.1	S	S	S	S
Social service-related occupation	100.0	55.7	44.4	100.0	S	S	100.0	59.6	40.5	100.0	49.7	50.4	S	S	S
Other non-SEH occupation	100.0	60.9	39.1	100.0	94.0	S	100.0	61.5	38.6	100.0	60.2	39.9	100.0	16.6	83.5

$S=$ suppressed for reliability or conididentiality.
SEH = science, engineering and health.
a Includes 240 non-Hispanic respondents reporting more than one race, not shown separately.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 39. Employed doctoral scientists and engineers, by occupation and citizenship status: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
	Number						
All occupations	621,630	556,640	468,060	88,580	64,990	40,880	24,110
Science occupations	371,210	330,840	286,350	44,490	40,370	25,300	15,070
Biological, agricultural, or other life scientist	116,010	101,560	86,890	14,670	14,440	8,170	6,270
Agricultural/food scientist	9,090	7,960	7,070	890	1,130	770	360
Biochemist/biophysicist	14,750	11,810	9,150	2,660	2,950	1,630	1,310
Biological scientist	21,080	18,200	15,960	2,240	2,880	1,380	1,500
Forestry/conservation scientist	1,660	1,570	1,470	110	80	60	S
Medical scientist	35,610	30,370	24,550	5,820	5,240	2,960	2,280
Postsecondary teacher, agricultural/other natural sciences	4,470	4,220	3,980	240	260	150	110
Postsecondary teacher, biological sciences	24,670	23,620	21,530	2,100	1,040	900	150
Other biological/agricultural/life scientist	4,680	3,820	3,190	630	860	320	540
Computer and information scientist	33,450	26,840	18,520	8,320	6,610	4,630	1,980
Computerlinformation scientist	26,280	21,000	14,270	6,740	5,280	3,650	1,630
Postsecondary teacher, computer science	7,170	5,840	4,250	1,590	1,330	980	350
Mathematical scientist	24,220	19,650	15,740	3,910	4,580	2,820	1,760
Mathematical scientist	9,870	7,750	5,790	1,960	2,110	1,160	950
Postsecondary teacher, mathematics/statistics	14,360	11,890	9,940	1,950	2,460	1,650	810
Physical scientist	74,490	65,980	56,360	9,620	8,510	5,310	3,210
Chemist, except biochemist	22,330	19,020	15,110	3,910	3,310	2,200	1,110
Earth/atmospheric/ocean scientist	9,730	8,460	7,500	960	1,270	650	610
Physicist/astronomer	13,410	11,700	9,870	1,830	1,710	1,010	700
Postsecondary teacher, chemistry	11,800	11,050	10,140	910	740	500	250
Postsecondary teacher, physics	8,160	7,360	6,000	1,360	800	520	280
Postsecondary teacher, other physical sciences	6,430	6,090	5,750	340	340	270	70
Other physical scientist	2,630	2,290	1,990	300	340	150	190
Psychologist	68,660	67,220	64,090	3,130	1,430	1,170	260
Psychologist	51,090	50,110	47,680	2,430	980	780	200
Postsecondary teacher, psychology	17,570	17,120	16,410	700	460	400	60
Social scientist	54,380	49,580	44,750	4,830	4,800	3,200	1,600
Economist	7,600	6,370	5,490	880	1,220	670	550
Political scientist	1,600	1,480	1,360	110	130	70	60
Postsecondary teacher, economics	8,640	7,320	6,280	1,030	1,320	940	380
Postsecondary teacher, political science	8,390	8,000	7,340	650	390	320	70
Postsecondary teacher, sociology	7,510	7,060	6,470	600	450	330	120
Postsecondary teacher, other social sciences	9,610	8,790	7,990	800	820	590	230
Sociologist/anthropologist	4,160	3,980	3,750	220	190	100	90
Other social scientist	6,870	6,580	6,060	530	290	170	110
Engineering occupations	79,380	64,430	44,520	19,910	14,950	8,620	6,330
Aerospace/aeronautical/astronautical engineer	5,250	4,890	3,640	1,250	360	200	160
Chemical engineer	7,010	5,980	4,090	1,880	1,040	560	470
Civil/architectural/sanitary engineer	4,370	3,210	1,910	1,300	1,160	800	360
Electrical engineer	18,040	13,230	8,680	4,540	4,820	2,920	1,900
Materials/metallurgical engineer	920	790	630	160	130	50	70
Mechanical engineer	8,090	6,090	3,700	2,390	2,000	990	1,010
Postsecondary teacher, engineering	17,150	15,110	10,490	4,620	2,040	1,480	560
Other engineer	18,550	15,140	11,370	3,760	3,410	1,620	1,790
Science and engineering-related occupations	66,110	62,070	51,950	10,120	4,030	2,740	1,290
Health occupation, except postsecondary teacher	19,690	18,500	15,480	3,020	1,190	740	450
Postsecondary teacher, health and related sciences	16,940	16,280	14,550	1,720	660	470	190
SEH manager	22,790	21,530	17,330	4,200	1,260	930	330
SEH precollege teacher	3,550	3,440	2,890	550	110	70	S

TABLE 39. Employed doctoral scientists and engineers, by occupation and citizenship status: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
SEH technician/technologist	2,850	2,100	1,480	620	760	510	240
Other SEH-related occupation	300	240	210	S	60	S	S
Non-science and engineering occupations	104,930	99,290	85,240	14,050	5,640	4,220	1,420
Arts/humanities-related occupation	5,170	5,030	4,590	440	140	90	S
Management-related occupation	22,290	20,240	16,950	3,290	2,050	1,410	640
Non-SEH manager	41,920	40,640	34,470	6,170	1,280	1,110	180
Non-SEH postsecondary teacher	12,130	11,030	9,790	1,240	1,100	750	350
Non-SEH precollege/other teacher	2,600	2,480	2,140	340	120	110	S
Sales/marketing occupation	8,010	7,470	6,190	1,280	550	400	140
Social service-related occupation	3,940	3,860	3,500	360	80	S	50
Other non-SEH occupation	8,860	8,540	7,610	930	320	320	S
	Percent						
All occupations	100.0	89.5	75.3	14.2	10.5	6.6	3.9
Science occupations	100.0	89.1	77.1	12.0	10.9	6.8	4.1
Biological, agricultural, or other life scientist	100.0	87.6	74.9	12.6	12.4	7.0	5.4
Agricultural/food scientist	100.0	87.5	77.8	9.7	12.5	8.5	3.9
Biochemistbiophysicist	100.0	80.0	62.0	18.0	20.0	11.1	8.9
Biological scientist	100.0	86.3	75.7	10.6	13.7	6.6	7.1
Forestry/conservation scientist	100.0	95.0	88.6	6.4	5.0	3.4	S
Medical scientist	100.0	85.3	68.9	16.3	14.7	8.3	6.4
Postsecondary teacher, agricultural/other natural sciences	100.0	94.2	88.9	5.3	5.8	3.3	2.5
Postsecondary teacher, biological sciences	100.0	95.8	87.3	8.5	4.2	3.6	0.6
Other biological/agricultural/ife scientist	100.0	81.6	68.2	13.4	18.4	6.9	11.5
Computer and information scientist	100.0	80.2	55.4	24.9	19.8	13.8	5.9
Computerlinformation scientist	100.0	79.9	54.3	25.6	20.1	13.9	6.2
Postsecondary teacher, computer science	100.0	81.4	59.3	22.1	18.6	13.7	4.9
Mathematical scientist	100.0	81.1	65.0	16.1	18.9	11.6	7.3
Mathematical scientist	100.0	78.6	58.7	19.9	21.4	11.8	9.6
Postsecondary teacher, mathematics/statistics	100.0	82.8	69.2	13.6	17.2	11.5	5.6
Physical scientist	100.0	88.6	75.7	12.9	11.4	7.1	4.3
Chemist, except biochemist	100.0	85.2	67.7	17.5	14.8	9.9	4.9
Earth/atmospheric/ocean scientist	100.0	87.0	77.1	9.9	13.0	6.7	6.3
Physicist/astronomer	100.0	87.3	73.6	13.7	12.7	7.5	5.2
Postsecondary teacher, chemistry	100.0	93.7	86.0	7.7	6.3	4.2	2.1
Postsecondary teacher, physics	100.0	90.2	73.5	16.7	9.8	6.4	3.5
Postsecondary teacher, other physical sciences	100.0	94.7	89.4	5.2	5.3	4.2	1.1
Other physical scientist	100.0	87.1	75.6	11.5	12.9	5.9	7.0
Psychologist	100.0	97.9	93.4	4.6	2.1	1.7	0.4
Psychologist	100.0	98.1	93.3	4.7	1.9	1.5	0.4
Postsecondary teacher, psychology	100.0	97.4	93.4	4.0	2.6	2.3	0.3
Social scientist	100.0	91.2	82.3	8.9	8.8	5.9	2.9
Economist	100.0	83.9	72.3	11.6	16.1	8.9	7.2
Political scientist	100.0	92.1	85.2	6.9	7.9	4.4	3.5
Postsecondary teacher, economics	100.0	84.7	72.7	12.0	15.3	10.9	4.4
Postsecondary teacher, political science	100.0	95.3	87.5	7.8	4.7	3.8	0.8
Postsecondary teacher, sociology	100.0	94.0	86.1	7.9	6.0	4.4	1.5
Postsecondary teacher, other social sciences	100.0	91.5	83.2	8.3	8.5	6.1	2.4
Sociologist/anthropologist	100.0	95.5	90.2	5.3	4.5	2.4	2.1
Other social scientist	100.0	95.8	88.1	7.7	4.2	2.5	1.6
Engineering occupations	100.0	81.2	56.1	25.1	18.8	10.9	8.0
Aerospace/aeronautical/astronautical engineer	100.0	93.1	69.4	23.7	6.9	3.8	3.0
Chemical engineer	100.0	85.2	58.4	26.8	14.8	8.0	6.7

TABLE 39. Employed doctoral scientists and engineers, by occupation and citizenship status: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
Civil/architectural/sanitary engineer	100.0	73.4	43.7	29.7	26.6	18.3	8.2
Electrical engineer	100.0	73.3	48.1	25.2	26.7	16.2	10.5
Materials/metallurgical engineer	100.0	86.3	68.5	17.9	13.7	5.7	8.0
Mechanical engineer	100.0	75.3	45.7	29.6	24.7	12.2	12.5
Postsecondary teacher, engineering	100.0	88.1	61.2	27.0	11.9	8.6	3.3
Other engineer	100.0	81.6	61.3	20.3	18.4	8.7	9.7
Science and engineering-related occupations	100.0	93.9	78.6	15.3	6.1	4.2	1.9
Health occupation, except postsecondary teacher	100.0	94.0	78.6	15.3	6.0	3.8	2.3
Postsecondary teacher, health and related sciences	100.0	96.1	85.9	10.2	3.9	2.8	1.1
SEH manager	100.0	94.5	76.1	18.4	5.5	4.1	1.4
SEH precollege teacher	100.0	96.9	81.5	15.4	3.1	1.9	S
SEH technician/technologist	100.0	73.5	51.8	21.7	26.5	18.0	8.5
Other SEH-related occupation	100.0	80.5	72.7	S	19.5	S	S
Non-science and engineering occupations	100.0	94.6	81.2	13.4	5.4	4.0	1.4
Arts/humanities-related occupation	100.0	97.3	88.7	8.6	2.7	1.8	S
Management-related occupation	100.0	90.8	76.1	14.7	9.2	6.3	2.9
Non-SEH manager	100.0	96.9	82.2	14.7	3.1	2.6	0.4
Non-SEH postsecondary teacher	100.0	90.9	80.7	10.2	9.1	6.2	2.9
Non-SEH precollege/other teacher	100.0	95.3	82.4	13.0	4.7	4.2	S
Sales/marketing occupation	100.0	93.2	77.2	16.0	6.8	5.0	1.8
Social service-related occupation	100.0	97.9	88.8	9.2	2.1	S	1.3
Other non-SEH occupation	100.0	96.4	85.9	10.5	3.6	3.6	S

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
	Number								
All occupations	621,630	67,740	82,900	89,740	89,460	91,370	87,100	68,030	45,300
Science occupations	371,210	46,770	53,940	55,240	52,910	52,280	48,020	37,440	24,620
Biological, agricultura, or other life scientist	116,010	18,220	19,010	18,070	17,250	16,130	12,320	9,760	5,240
Agricultural/food scientist	9,090	580	1,100	1,310	1,740	1,680	1,170	1,060	450
Biochemist/biophysicist	14,750	3,660	3,010	2,500	1,960	1,590	910	670	450
Biological scientist	21,080	4,400	3,900	3,170	2,750	2,390	2,470	1,200	810
Forestry/conservation scientist	1,660	80	230	220	280	370	200	180	80
Medical scientist	35,610	6,200	6,470	5,950	4,950	5,140	3,240	2,200	1,440
Postsecondary teacher, agricultural/other natural sciences	4,470	390	300	780	870	700	550	680	190
Postsecondary teacher, biological sciences	24,670	1,670	3,030	3,440	4,100	3,790	3,400	3,610	1,640
Other biologica//agricultural/life scientist	4,680	1,240	990	700	580	470	370	160	180
Computer and information scientist	33,450	3,500	5,670	6,290	5,350	4,740	3,860	2,820	1,230
Computerlinformation scientist	26,280	2,780	4,560	5,380	4,100	3,700	2,820	2,070	880
Postsecondary teacher, computer science	7,170	720	1,110	910	1,250	1,040	1,050	750	350
Mathematical scientist	24,220	3,680	3,660	3,650	3,000	3,020	2,700	2,450	2,060
Mathematical scientist	9,870	1,740	1,620	1,700	1,080	1,360	810	960	600
Postsecondary teacher, mathematics/statistics	14,360	1,940	2,040	1,950	1,920	1,660	1,900	1,500	1,460
Physical scientist	74,490	10,000	9,960	11,980	11,230	9,290	8,590	7,100	6,350
Chemist, except biochemist	22,330	3,670	3,020	4,160	3,490	2,840	2,340	1,620	1,170
Earth/atmospheric/ocean scientist	9,730	1,160	1,120	1,430	1,260	1,550	1,610	730	870
Physicist/astronomer	13,410	2,190	1,840	1,890	1,970	1,550	1,350	1,460	1,160
Postsecondary teacher, chemistry	11,800	1,430	1,760	1,910	1,560	1,060	1,230	1,480	1,360
Postsecondary teacher, physics	8,160	720	1,120	1,310	1,150	800	1,000	910	1,140
Postsecondary teacher, other physical sciences	6,430	360	690	970	1,360	1,100	850	680	430
Other physical scientist	2,630	470	400	310	440	390	210	220	200
Psychologist	68,660	6,740	7,140	7,870	8,900	11,910	12,180	8,560	5,360
Psychologist	51,090	4,570	4,740	5,350	6,660	9,840	9,610	6,270	4,050
Postsecondary teacher, psychology	17,570	2,160	2,400	2,520	2,240	2,080	2,570	2,280	1,320
Social scientist	54,380	4,630	8,510	7,370	7,180	7,200	8,360	6,750	4,380
Economist	7,600	650	1,540	1,180	1,090	940	910	930	350
Political scientist	1,600	220	340	240	170	S	210	170	230
Postsecondary teacher, economics	8,640	770	1,030	840	1,450	1,310	1,420	1,100	700
Postsecondary teacher, political science	8,390	700	1,520	1,160	1,000	890	1,160	1,190	760
Postsecondary teacher, sociology	7,510	510	1,220	880	1,040	1,110	1,100	840	810
Postsecondary teacher, other social sciences	9,610	760	1,110	1,270	1,250	1,340	1,510	1,530	850
Sociologist/anthropologist	4,160	240	540	590	410	660	930	470	320
Other social scientist	6,870	780	1,200	1,200	780	910	1,120	510	370
Engineering occupations	79,380	11,820	12,070	13,070	11,290	9,150	8,240	7,260	6,480
Aerospace/aeronautical/astronautical engineer	5,250	320	840	770	800	710	760	510	530
Chemical engineer	7,010	1,150	870	1,220	1,330	600	850	550	440
Civil/architectural/sanitary engineer	4,370	620	640	810	470	390	260	490	700
Electrical engineer	18,040	3,190	3,270	3,470	2,340	1,780	1,280	1,470	1,240
Materials/metallurgical engineer	920	S	70	160	220	180	80	110	100
Mechanical engineer	8,090	1,320	1,290	1,470	1,240	900	690	640	540
Postsecondary teacher, engineering	17,150	1,720	2,210	2,550	2,480	2,380	2,400	1,820	1,580
Other engineer	18,550	3,490	2,880	2,620	2,420	2,210	1,920	1,660	1,350
Science and engineering-related occupations	66,110	4,170	6,880	9,320	10,430	12,240	11,370	7,510	4,200
Health occupation, except postsecondary teacher	19,690	2,300	2,280	2,690	2,600	3,170	2,750	2,570	1,320
Postsecondary teacher, health and related sciences	16,940	830	1,360	1,990	2,190	3,710	3,390	1,790	1,670
SEH manager	22,790	600	2,310	3,800	4,560	4,280	4,110	2,370	760
SEH precollege teacher	3,550	100	360	330	670	630	670	450	330
SEH technician/technologist	2,850	350	490	470	360	400	430	250	100

	All							
Occupation	employed	Under 35	$35-39$	$40-44$	$45-49$	$50-54$	$55-59$	$60-64$
	300	S	80	S	S	S	S	S
Other SEH-related occupation	104,930	4,980	10,000	12,120	14,830	17,700	19,470	15,820

TABLE 40. Employed doctoral scientists and engineers, by occupation and age: 2006

All									
Occupation	employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
Materials/metallurgical engineer	100.0	S	7.5	17.2	23.4	19.3	8.8	12.2	10.8
Mechanical engineer	100.0	16.3	15.9	18.2	15.3	11.2	8.5	7.9	6.7
Postsecondary teacher, engineering	100.0	10.0	12.9	14.9	14.5	13.9	14.0	10.6	9.2
Other engineer	100.0	18.8	15.5	14.1	13.0	11.9	10.4	9.0	7.3
Science and engineering-related occupations	100.0	6.3	10.4	14.1	15.8	18.5	17.2	11.4	6.4
Health occupation, except postsecondary teacher	100.0	11.7	11.6	13.7	13.2	16.1	14.0	13.1	6.7
Postsecondary teacher, health and related sciences	100.0	4.9	8.0	11.8	12.9	21.9	20.0	10.6	9.9
SEH manager	100.0	2.6	10.1	16.7	20.0	18.8	18.0	10.4	3.4
SEH precollege teacher	100.0	2.8	10.0	9.4	19.0	17.7	19.0	12.7	9.4
SEH technician/technologist	100.0	12.2	17.2	16.4	12.6	14.1	15.1	8.8	3.6
Other SEH-related occupation	100.0	S	27.6	S	S	S	S	25.3	S
Non-science and engineering occupations	100.0	4.7	9.5	11.5	14.1	16.9	18.6	15.1	9.5
Arts/humanities-related occupation	100.0	5.0	14.6	12.5	11.2	11.7	11.8	17.8	15.4
Management-related occupation	100.0	8.5	14.4	14.1	15.6	13.8	16.8	10.9	5.8
Non-SEH manager	100.0	1.2	4.4	10.9	14.3	21.1	22.1	17.3	8.9
Non-SEH postsecondary teacher	100.0	7.7	13.0	10.8	12.7	13.3	16.3	14.9	11.3
Non-SEH precollege/other teacher	100.0	3.8	12.7	7.0	16.5	19.8	17.2	11.6	11.4
Sales/marketing occupation	100.0	6.6	12.1	11.8	11.8	14.5	15.1	15.8	12.3
Social service-related occupation	100.0	5.8	8.8	8.6	8.8	16.1	20.1	16.2	15.6
Other non-SEH occupation	100.0	6.2	11.2	11.3	17.1	14.3	16.2	13.3	10.5

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and heath.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 41. Employed doctoral scientists and engineers, by occupation and years since doctorate: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
	Number						
All occupations	621,630	113,640	108,480	96,640	77,730	71,390	153,740
Science occupations	371,210	75,620	67,870	57,540	44,780	40,440	84,950
Biological, agricultural, or other life scientist	116,010	28,470	21,780	18,440	13,030	11,520	22,760
Agricultural/food scientist	9,090	1,440	1,430	1,500	1,360	1,310	2,050
Biochemist/biophysicist	14,750	4,870	2,930	2,510	1,520	980	1,950
Biological scientist	21,080	7,150	4,050	2,650	2,110	1,890	3,230
Forestry/conservation scientist	1,660	380	250	230	250	210	350
Medical scientist	35,610	9,250	7,210	5,920	3,920	3,430	5,870
Postsecondary teacher, agricultural/other natural sciences	4,470	600	790	690	720	490	1,180
Postsecondary teacher, biological sciences	24,670	2,760	4,070	4,530	2,830	2,860	7,610
Other biological/agricultural/life scientist	4,680	2,020	1,050	420	330	330	540
Computer and information scientist	33,450	5,940	7,870	6,900	3,560	3,070	6,110
Computer/information scientist	26,280	4,450	6,290	5,650	2,900	2,510	4,480
Postsecondary teacher, computer science	7,170	1,490	1,580	1,250	660	560	1,630
Mathematical scientist	24,220	4,990	4,470	3,530	3,010	1,980	6,240
Mathematical scientist	9,870	2,370	2,120	1,460	1,240	780	1,910
Postsecondary teacher, mathematics/statistics	14,360	2,620	2,350	2,080	1,770	1,210	4,330
Physical scientist	74,490	13,720	12,680	10,820	9,410	7,970	19,900
Chemist, except biochemist	22,330	4,570	4,040	3,550	2,880	2,350	4,940
Earth/atmospheric/ocean scientist	9,730	2,030	1,640	1,110	1,110	1,100	2,740
Physicist/astronomer	13,410	2,850	2,130	1,790	1,460	1,460	3,720
Postsecondary teacher, chemistry	11,800	1,560	2,050	1,840	1,460	1,140	3,760
Postsecondary teacher, physics	8,160	1,020	1,320	1,120	1,290	750	2,660
Postsecondary teacher, other physical sciences	6,430	810	1,130	1,070	1,010	930	1,490
Other physical scientist	2,630	880	380	340	200	240	590
Psychologist	68,660	10,780	11,390	10,710	9,490	9,760	16,520
Psychologist	51,090	7,680	7,970	8,230	7,350	8,020	11,840
Postsecondary teacher, psychology	17,570	3,090	3,420	2,480	2,140	1,750	4,680
Social scientist	54,380	11,720	9,670	7,140	6,280	6,140	13,420
Economist	7,600	1,360	1,590	1,170	780	970	1,730
Political scientist	1,600	500	240	200	80	90	490
Postsecondary teacher, economics	8,640	1,340	940	1,160	1,250	1,290	2,660
Postsecondary teacher, political science	8,390	1,810	1,460	1,060	790	890	2,370
Postsecondary teacher, sociology	7,510	1,650	1,450	810	970	850	1,790
Postsecondary teacher, other social sciences	9,610	2,280	1,780	1,410	970	880	2,280
Sociologist/anthropologist	4,160	870	740	440	730	500	890
Other social scientist	6,870	1,900	1,490	890	700	670	1,220
Engineering occupations	79,380	16,500	15,480	12,910	9,110	7,130	18,240
Aerospace/aeronautical/astronautical engineer	5,250	780	840	920	620	620	1,470
Chemical engineer	7,010	1,210	1,300	1,190	1,240	440	1,640
Civil/architectural/sanitary engineer	4,370	960	960	590	460	370	1,030
Electrical engineer	18,040	4,230	4,380	2,920	1,940	1,250	3,330
Materials/metallurgical engineer	920	110	150	160	130	80	290
Mechanical engineer	8,090	2,140	1,650	1,460	680	510	1,640
Postsecondary teacher, engineering	17,150	2,540	2,630	2,710	2,520	2,050	4,700
Other engineer	18,550	4,510	3,580	2,960	1,520	1,830	4,150
Science and engineering-related occupations	66,110	9,850	10,840	11,580	9,260	8,910	15,670
Health occupation, except postsecondary teacher	19,690	4,140	3,340	2,830	2,280	2,400	4,690
Postsecondary teacher, health and related sciences	16,940	3,560	2,720	2,780	2,370	1,870	3,640
SEH manager	22,790	1,270	3,370	4,870	3,640	3,930	5,710
SEH precollege teacher	3,550	330	560	550	670	410	1,040
SEH technician/technologist	2,850	540	760	510	300	250	490

TABLE 41. Employed doctoral scientists and engineers, by occupation and years since doctorate: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
Other SEH-related occupation	300	S	100	S	S	S	90
Non-science and engineering occupations	104,930	11,670	14,290	14,610	14,570	14,900	34,890
Arts/humanities-related occupation	5,170	850	660	690	610	580	1,780
Management-related occupation	22,290	3,180	4,120	3,610	3,010	2,460	5,910
Non-SEH manager	41,920	1,620	3,840	5,380	6,640	7,560	16,880
Non-SEH postsecondary teacher	12,130	3,110	1,770	1,700	1,050	1,320	3,170
Non-SEH precollege/other teacher	2,600	360	490	330	460	440	530
Sales/marketing occupation	8,010	720	1,350	900	1,060	1,060	2,910
Social service-related occupation	3,940	890	550	660	350	440	1,070
Other non-SEH occupation	8,860	940	1,500	1,330	1,390	1,050	2,650
	Percent						
All occupations	100.0	18.3	17.5	15.5	12.5	11.5	24.7
Science occupations	100.0	20.4	18.3	15.5	12.1	10.9	22.9
Biological, agricultural, or other life scientist	100.0	24.5	18.8	15.9	11.2	9.9	19.6
Agricultural/food scientist	100.0	15.9	15.7	16.5	14.9	14.5	22.5
Biochemist/biophysicist	100.0	33.0	19.9	17.0	10.3	6.7	13.2
Biological scientist	100.0	33.9	19.2	12.6	10.0	9.0	15.3
Forestry/conservation scientist	100.0	22.6	15.0	13.7	15.0	12.6	21.1
Medical scientist	100.0	26.0	20.3	16.6	11.0	9.6	16.5
Postsecondary teacher, agricultural/other natural sciences	100.0	13.4	17.6	15.5	16.2	11.0	26.3
Postsecondary teacher, biological sciences	100.0	11.2	16.5	18.4	11.5	11.6	30.9
Other biological/agricultural/life scientist	100.0	43.2	22.4	8.9	7.0	7.1	11.5
Computer and information scientist	100.0	17.8	23.5	20.6	10.6	9.2	18.3
Computer/information scientist	100.0	16.9	23.9	21.5	11.0	9.5	17.0
Postsecondary teacher, computer science	100.0	20.8	22.1	17.4	9.2	7.8	22.7
Mathematical scientist	100.0	20.6	18.4	14.6	12.4	8.2	25.8
Mathematical scientist	100.0	24.1	21.5	14.8	12.5	7.9	19.3
Postsecondary teacher, mathematics/statistics	100.0	18.2	16.4	14.5	12.3	8.4	30.2
Physical scientist	100.0	18.4	17.0	14.5	12.6	10.7	26.7
Chemist, except biochemist	100.0	20.5	18.1	15.9	12.9	10.5	22.1
Earth/atmospheric/ocean scientist	100.0	20.9	16.8	11.4	11.4	11.3	28.2
Physicist/astronomer	100.0	21.3	15.9	13.4	10.9	10.9	27.7
Postsecondary teacher, chemistry	100.0	13.2	17.4	15.6	12.3	9.6	31.9
Postsecondary teacher, physics	100.0	12.5	16.2	13.8	15.8	9.2	32.6
Postsecondary teacher, other physical sciences	100.0	12.6	17.6	16.6	15.7	14.5	23.1
Other physical scientist	100.0	33.4	14.6	12.8	7.7	9.1	22.4
Psychologist	100.0	15.7	16.6	15.6	13.8	14.2	24.1
Psychologist	100.0	15.0	15.6	16.1	14.4	15.7	23.2
Postsecondary teacher, psychology	100.0	17.6	19.5	14.1	12.2	9.9	26.6
Social scientist	100.0	21.6	17.8	13.1	11.5	11.3	24.7
Economist	100.0	17.9	20.9	15.4	10.2	12.8	22.7
Political scientist	100.0	31.3	15.1	12.4	5.1	5.4	30.8
Postsecondary teacher, economics	100.0	15.5	10.8	13.4	14.5	14.9	30.8
Postsecondary teacher, political science	100.0	21.6	17.3	12.7	9.4	10.7	28.2
Postsecondary teacher, sociology	100.0	22.0	19.2	10.7	13.0	11.3	23.8
Postsecondary teacher, other social sciences	100.0	23.7	18.5	14.7	10.1	9.2	23.8
Sociologist/anthropologist	100.0	20.8	17.7	10.6	17.5	12.1	21.3
Other social scientist	100.0	27.7	21.7	13.0	10.2	9.8	17.7
Engineering occupations	100.0	20.8	19.5	16.3	11.5	9.0	23.0
Aerospace/aeronautical/astronautical engineer	100.0	14.9	16.1	17.5	11.8	11.7	28.0
Chemical engineer	100.0	17.3	18.5	17.0	17.6	6.2	23.4
Civil/architectural/sanitary engineer	100.0	22.1	21.9	13.4	10.6	8.5	23.5

TABLE 41. Employed doctoral scientists and engineers, by occupation and years since doctorate: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
Electrical engineer	100.0	23.4	24.3	16.2	10.8	6.9	18.4
Materials/metallurgical engineer	100.0	12.5	16.2	17.0	14.2	8.3	31.8
Mechanical engineer	100.0	26.5	20.5	18.0	8.5	6.3	20.3
Postsecondary teacher, engineering	100.0	14.8	15.3	15.8	14.7	11.9	27.4
Other engineer	100.0	24.3	19.3	16.0	8.2	9.9	22.3
Science and engineering-related occupations	100.0	14.9	16.4	17.5	14.0	13.5	23.7
Health occupation, except postsecondary teacher	100.0	21.0	17.0	14.4	11.6	12.2	23.8
Postsecondary teacher, health and related sciences	100.0	21.0	16.0	16.4	14.0	11.0	21.5
SEH manager	100.0	5.6	14.8	21.4	16.0	17.3	25.1
SEH precollege teacher	100.0	9.2	15.7	15.6	18.8	11.5	29.2
SEH technician/technologist	100.0	18.9	26.5	18.0	10.6	8.8	17.2
Other SEH-related occupation	100.0	S	34.1	S	S	S	31.0
Non-science and engineering occupations	100.0	11.1	13.6	13.9	13.9	14.2	33.3
Arts/humanities-related occupation	100.0	16.4	12.8	13.3	11.9	11.2	34.4
Management-related occupation	100.0	14.3	18.5	16.2	13.5	11.0	26.5
Non-SEH manager	100.0	3.9	9.2	12.8	15.8	18.0	40.3
Non-SEH postsecondary teacher	100.0	25.7	14.6	14.0	8.7	10.9	26.2
Non-SEH precollege/other teacher	100.0	13.7	18.8	12.7	17.7	16.9	20.2
Sales/marketing occupation	100.0	9.0	16.9	11.3	13.3	13.3	36.3
Social service-related occupation	100.0	22.5	13.9	16.7	8.8	11.1	27.0
Other non-SEH occupation	100.0	10.6	17.0	15.0	15.7	11.8	29.9

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4 -year eductiona institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State and local government	$\begin{aligned} & \text { Self- } \\ & \text { employed }^{\text {d }} \end{aligned}$	Other ${ }^{\text {e }}$
					Number				
All occupations	621,630	271,540	20,920	192,900	38,560	38,450	18,210	39,620	1,430
Science occupations	371,210	192,420	12,030	84,790	21,580	24,530	10,460	24,360	1,040
Biological, agricultural, or other life scientist	116,010	68,600	2,810	22,780	6,820	10,420	2,350	2,110	100
Agricultural/food scientist	9,090	3,210	S	3,430	350	1,580	160	340	S
Biochemist/biophysicist	14,750	7,280	S	5,040	1,110	990	130	190	S
Biological scientist	21,080	11,060	S	2,990	1,800	3,670	920	550	S
Forestry/conservation scientist	1,660	380	S	150	230	620	150	100	S
Medical scientist	35,610	18,380	S	9,760	2,780	3,150	740	780	S
Postsecondary teacher, agricultural/ other natural sciences	4,470	4,340	140	S	S	S	S	S	S
Postsecondary teacher, biological sciences	24,670	21,980	2,610	S	S	S	S	S	S
Other biological/agricultural/ife scientist	4,680	1,980	S	1,380	510	410	250	150	S
Computer and information scientist	33,450	9,680	180	19,340	1,460	630	870	1,240	S
Computerlinformation scientist	26,280	2,750	S	19,320	1,460	630	840	1,240	S
Postsecondary teacher, computer science	7,170	6,930	180	S	S	S	S	S	S
Mathematical scientist	24,220	15,730	920	4,460	1,050	1,350	230	480	S
Mathematical scientist	9,870	2,280	60	4,430	1,020	1,350	230	480	S
Postsecondary teacher, mathematics/statistics	14,360	13,440	860	S	S	S	S	S	S
Physical scientist	74,490	33,630	2,640	23,790	4,200	5,990	2,490	1,710	S
Chemist, except biochemist	22,330	2,970	S	15,470	970	1,450	590	840	S
Earth/atmospheric/ocean scientist	9,730	2,780	S	2,590	940	2,310	700	400	S
Physicist/astronomer	13,410	3,880	S	4,400	2,060	1,830	950	250	S
Postsecondary teacher, chemistry	11,800	10,090	1,650	S	S	S	S	S	S
Postsecondary teacher, physics	8,160	7,400	740	S	S	S	S	S	S
Postsecondary teacher, other physical sciences	6,430	6,150	230	S	S	S	S	S	S
Other physical scientist	2,630	360	S	1,290	170	390	230	190	S
Psychologist	68,660	25,500	3,740	10,680	5,350	2,490	3,350	17,530	S
Psychologist	51,090	8,930	2,790	10,650	5,330	2,490	3,350	17,530	S
Postsecondary teacher, psychology	17,570	16,570	950	S	S	S	S	S	S
Social scientist	54,380	39,280	1,730	3,740	2,700	3,640	1,170	1,290	810
Economist	7,600	1,720	S	1,700	630	2,110	240	400	770
Political scientist	1,600	910	S	110	180	170	100	90	S
Postsecondary teacher, economics	8,640	8,300	330	S	S	S	S	S	S
Postsecondary teacher, political science	8,390	8,010	360	S	S	S	S	S	S
Postsecondary teacher, sociology	7,510	7,080	430	S	S	S	S	S	S
Postsecondary teacher, other social sciences	9,610	9,210	360	S	S	S	S	S	S
Sociologist/anthropologist	4,160	1,740	S	570	590	700	340	190	S
Other social scientist	6,870	2,310	150	1,350	1,300	600	490	610	S
Engineering occupations	79,380	24,610	290	42,370	2,710	4,380	1,850	3,140	S
Aerospace/aeronautical/astronautical engineer	5,250	300	S	3,240	350	980	120	260	S
Chemical engineer	7,010	540	S	5,810	200	210	100	150	S
Civil/architectural/sanitary engineer	4,370	530	S	2,360	140	220	650	470	S
Electrical engineer	18,040	2,180	S	13,010	930	770	250	870	S
Materials/metallurgical engineer	920	130	S	640	S	S	S	120	S
Mechanical engineer	8,090	910	S	6,100	150	430	110	360	S
Postsecondary teacher, engineering	17,150	16,920	200	S	S	S	S	S	S
Other engineer	18,550	3,100	S	11,230	930	1,710	620	910	S
Science and engineering-related occupations	66,110	25,360	4,070	21,760	5,570	4,340	2,550	2,380	80
Health occupation, except postsecondary teacher	19,690	6,110	160	6,140	2,850	1,740	650	2,020	S
Postsecondary teacher, health and related sciences	16,940	16,450	330	100	S	S	S	S	S

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State and local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
SEH manager	22,790	2,420	80	13,300	2,610	2,430	1,710	190	60
SEH precollege teacher	3,550	S	3,500	S	S	S	S	S	S
SEH technician/technologist	2,850	380	S	2,030	90	120	120	110	S
Other SEH-related occupation	300	S	S	190	S	S	70	S	S
Non-science and engineering occupations	104,930	29,160	4,530	43,970	8,690	5,210	3,350	9,730	290
Arts/humanities-related occupation	5,170	470	S	1,780	520	110	100	2,170	S
Management-related occupation	22,290	2,010	380	12,320	2,110	2,100	870	2,460	S
Non-SEH manager	41,920	13,780	1,600	18,850	3,700	1,960	1,150	640	250
Non-SEH postsecondary teacher	12,130	11,450	530	S	S	60	S	S	S
Non-SEH precollege/other teacher	2,600	100	1,290	360	240	S	130	470	S
Sales/marketing occupation	8,010	90	S	6,120	130	50	60	1,560	S
Social service-related occupation	3,940	490	500	650	1,360	50	240	650	S
Other non-SEH occupation	8,860	770	210	3,890	590	860	790	1,750	S
					Percent				
All occupations	100.0	43.7	3.4	31.0	6.2	6.2	2.9	6.4	0.2
Science occupations	100.0	51.8	3.2	22.8	5.8	6.6	2.8	6.6	0.3
Biological, agricultural, or other life scientist	100.0	59.1	2.4	19.6	5.9	9.0	2.0	1.8	0.1
Agricultural/food scientist	100.0	35.3	S	37.7	3.8	17.4	1.8	3.7	S
Biochemist/biophysicist	100.0	49.3	S	34.1	7.5	6.7	0.9	1.3	S
Biological scientist	100.0	52.5	S	14.2	8.5	17.4	4.3	2.6	S
Forestry/conservation scientist	100.0	22.7	S	9.3	13.8	37.6	9.1	6.3	S
Medical scientist	100.0	51.6	S	27.4	7.8	8.8	2.1	2.2	S
Postsecondary teacher, agricultural/ other natural sciences	100.0	96.9	3.1	S	S	S	S	S	S
Postsecondary teacher, biological sciences	100.0	89.1	10.6	S	S	S	S	S	S
Other biological/agricultural/life scientist	100.0	42.3	S	29.5	10.9	8.7	5.3	3.2	S
Computer and information scientist	100.0	28.9	0.5	57.8	4.4	1.9	2.6	3.7	S
Computer/information scientist	100.0	10.5	S	73.5	5.6	2.4	3.2	4.7	S
Postsecondary teacher, computer science	100.0	96.7	2.5	S	S	S	S	S	S
Mathematical scientist	100.0	64.9	3.8	18.4	4.3	5.6	1.0	2.0	S
Mathematical scientist	100.0	23.1	0.6	44.9	10.4	13.7	2.4	4.9	S
Postsecondary teacher, mathematics/statistics	100.0	93.6	6.0	S	S	S	S	S	S
Physical scientist	100.0	45.1	3.5	31.9	5.6	8.0	3.3	2.3	S
Chemist, except biochemist	100.0	13.3	S	69.3	4.3	6.5	2.7	3.8	S
Earth/atmospheric/ocean scientist	100.0	28.6	S	26.7	9.7	23.8	7.2	4.1	S
Physicist/astronomer	100.0	28.9	S	32.8	15.4	13.7	7.1	1.9	S
Postsecondary teacher, chemistry	100.0	85.5	13.9	S	S	S	S	S	S
Postsecondary teacher, physics	100.0	90.6	9.1	S	S	S	S	S	S
Postsecondary teacher, other physical sciences	100.0	95.6	3.5	S	S	S	S	S	S
Other physical scientist	100.0	13.7	S	49.0	6.6	14.8	8.7	7.2	S
Psychologist	100.0	37.1	5.4	15.6	7.8	3.6	4.9	25.5	S
Psychologist	100.0	17.5	5.5	20.8	10.4	4.9	6.5	34.3	S
Postsecondary teacher, psychology	100.0	94.3	5.4	S	S	S	S	S	S
Social scientist	100.0	72.2	3.2	6.9	5.0	6.7	2.2	2.4	1.5
Economist	100.0	22.6	S	22.4	8.2	27.8	3.2	5.2	10.1
Political scientist	100.0	56.7	S	7.1	11.2	10.5	6.2	5.8	S
Postsecondary teacher, economics	100.0	96.1	3.8	S	S	S	S	S	S
Postsecondary teacher, political science	100.0	95.5	4.3	S	S	S	S	S	S
Postsecondary teacher, sociology	100.0	94.3	5.7	S	S	S	S	S	S
Postsecondary teacher, other social sciences	100.0	95.9	3.7	S	S	S	S	S	S
Sociologist/anthropologist	100.0	41.8	S	13.7	14.1	16.8	8.2	4.6	S

TABLE 42. Employed doctoral scientists and engineers, by occupation and sector of employment: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State and local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
Other social scientist	100.0	33.7	2.2	19.7	19.0	8.7	7.1	8.9	S
Engineering occupations	100.0	31.0	0.4	53.4	3.4	5.5	2.3	4.0	S
Aerospace/aeronautical/astronautical engineer	100.0	5.7	S	61.6	6.8	18.7	2.3	4.9	S
Chemical engineer	100.0	7.7	S	82.8	2.9	3.0	1.4	2.1	S
Civil/architectural/sanitary engineer	100.0	12.0	S	53.9	3.1	5.1	15.0	10.9	S
Electrical engineer	100.0	12.1	S	72.1	5.1	4.3	1.4	4.8	S
Materials/metallurgical engineer	100.0	13.9	S	69.1	S	S	S	13.2	S
Mechanical engineer	100.0	11.3	S	75.4	1.8	5.3	1.3	4.5	S
Postsecondary teacher, engineering	100.0	98.7	1.2	S	S	S	S	S	S
Other engineer	100.0	16.7	S	60.5	5.0	9.2	3.4	4.9	S
Science and engineering-related occupations	100.0	38.4	6.2	32.9	8.4	6.6	3.9	3.6	0.1
Health occupation, except postsecondary teacher	100.0	31.0	0.8	31.2	14.5	8.8	3.3	10.3	S
Postsecondary teacher, health and related sciences	100.0	97.1	2.0	0.6	S	S	S	S	S
SEH manager	100.0	10.6	0.3	58.4	11.5	10.6	7.5	0.8	0.3
SEH precollege teacher	100.0	S	98.6	S	S	S	S	S	S
SEH technician/technologist	100.0	13.5	S	71.2	3.2	4.2	4.3	3.7	S
Other SEH-related occupation	100.0	S	S	63.4	S	S	23.3	S	S
Non-science and engineering occupations	100.0	27.8	4.3	41.9	8.3	5.0	3.2	9.3	0.3
Arts/humanities-related occupation	100.0	9.2	S	34.4	10.1	2.0	1.9	42.0	S
Management-related occupation	100.0	9.0	1.7	55.3	9.5	9.4	3.9	11.0	S
Non-SEH manager	100.0	32.9	3.8	45.0	8.8	4.7	2.7	1.5	0.6
Non-SEH postsecondary teacher	100.0	94.4	4.4	S	S	0.5	S	S	S
Non-SEH precollege/other teacher	100.0	3.7	49.6	13.8	9.1	S	4.9	18.2	S
Sales/marketing occupation	100.0	1.1	S	76.4	1.7	0.6	0.8	19.4	S
Social service-related occupation	100.0	12.4	12.7	16.4	34.6	1.4	6.0	16.5	S
Other non-SEH occupation	100.0	8.7	2.3	43.9	6.6	9.7	9.0	19.7	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science , engineering, and health.
${ }^{\text {a }} 4$-year educational institution includes 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 43. Employed doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 2006

Employment sector and occupation	All employed	Male	Female	All employed	Male	Female
	Number			Percent		
All sectors	621,630	438,900	182,730	100.0	70.6	29.4
Science occupations	371,210	252,470	118,740	100.0	68.0	32.0
Biological, agricultural, or other life scientist	116,010	76,350	39,660	100.0	65.8	34.2
Computer and information scientist	33,450	28,700	4,760	100.0	85.8	14.2
Mathematical scientist	24,220	18,860	5,360	100.0	77.9	22.1
Physical scientist	74,490	62,240	12,260	100.0	83.5	16.5
Psychologist	68,660	31,870	36,790	100.0	46.4	53.6
Social scientist	54,380	34,460	19,920	100.0	63.4	36.6
Engineering occupations	79,380	71,240	8,150	100.0	89.7	10.3
SEH-related occupations	66,110	43,120	22,990	100.0	65.2	34.8
Non-SEH occupations	104,930	72,080	32,850	100.0	68.7	31.3
4-year educational institutions ${ }^{\text {a }}$	271,540	182,920	88,620	100.0	67.4	32.6
Science occupations	192,420	128,680	63,740	100.0	66.9	33.1
Biological, agricultural, or other life scientist	68,600	44,420	24,180	100.0	64.8	35.2
Computer and information scientist	9,680	8,080	1,600	100.0	83.5	16.5
Mathematical scientist	15,730	12,060	3,670	100.0	76.7	23.3
Physical scientist	33,630	27,300	6,330	100.0	81.2	18.8
Psychologist	25,500	11,590	13,910	100.0	45.5	54.5
Social scientist	39,280	25,230	14,050	100.0	64.2	35.8
Engineering occupations	24,610	21,660	2,940	100.0	88.0	12.0
SEH-related occupations	25,360	13,590	11,760	100.0	53.6	46.4
Non-SEH occupations	29,160	18,980	10,180	100.0	65.1	34.9
Other educational institutions ${ }^{\text {b }}$	20,920	11,930	8,980	100.0	57.0	43.0
Science occupations	12,030	7,340	4,690	100.0	61.0	39.0
Biological, agricultural, or other life scientist	2,810	1,670	1,140	100.0	59.4	40.6
Computer and information scientist	180	180	S	100.0	97.8	S
Mathematical scientist	920	750	180	100.0	80.9	19.1
Physical scientist	2,640	2,160	480	100.0	81.9	18.1
Psychologist	3,740	1,540	2,190	100.0	41.3	58.7
Social scientist	1,730	1,040	690	100.0	60.0	40.0
Engineering occupations	290	290	S	100.0	100.0	S
SEH-related occupations	4,070	2,450	1,620	100.0	60.3	39.7
Non-SEH occupations	4,530	1,850	2,680	100.0	40.9	59.1
Private for-profit ${ }^{\text {c }}$	192,900	155,560	37,340	100.0	80.6	19.4
Science occupations	84,790	65,250	19,540	100.0	77.0	23.0
Biological, agricultural, or other life scientist	22,780	15,820	6,960	100.0	69.4	30.6
Computer and information scientist	19,340	16,730	2,610	100.0	86.5	13.5
Mathematical scientist	4,460	3,740	720	100.0	83.9	16.1
Physical scientist	23,790	20,330	3,460	100.0	85.4	14.6
Psychologist	10,680	5,890	4,790	100.0	55.1	44.9
Social scientist	3,740	2,740	1,000	100.0	73.3	26.7
Engineering occupations	42,370	38,500	3,880	100.0	90.9	9.1
SEH-related occupations	21,760	17,360	4,400	100.0	79.8	20.2
Non-SEH occupations	43,970	34,440	9,530	100.0	78.3	21.7
Private non-profit	38,560	23,870	14,690	100.0	61.9	38.1
Science occupations	21,580	13,330	8,250	100.0	61.8	38.2
Biological, agricultural, or other life scientist	6,820	4,350	2,470	100.0	63.8	36.2
Computer and information scientist	1,460	1,280	180	100.0	87.6	12.4
Mathematical scientist	1,050	780	270	100.0	74.1	25.9
Physical scientist	4,200	3,550	640	100.0	84.7	15.3
Psychologist	5,350	2,250	3,100	100.0	42.1	57.9
Social scientist	2,700	1,110	1,590	100.0	41.2	58.8
Engineering occupations	2,710	2,420	290	100.0	89.4	10.6
SEH-related occupations	5,570	3,290	2,280	100.0	59.1	40.9
Non-SEH occupations	8,690	4,830	3,860	100.0	55.5	44.5

TABLE 43. Employed doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 2006

Employment sector and occupation	All employed	Male	Female	All employed	Male	Female
	Number			Percent		
Federal government	38,450	27,440	11,010	100.0	71.4	28.6
Science occupations	24,530	17,200	7,330	100.0	70.1	29.9
Biological, agricultural, or other life scientist	10,420	6,870	3,560	100.0	65.9	34.1
Computer and information scientist	630	540	90	100.0	85.3	14.7
Mathematical scientist	1,350	1,080	280	100.0	79.7	20.3
Physical scientist	5,990	5,110	880	100.0	85.3	14.7
Psychologist	2,490	1,400	1,100	100.0	56.0	44.0
Social scientist	3,640	2,220	1,430	100.0	60.8	39.2
Engineering occupations	4,380	3,870	510	100.0	88.4	11.6
SEH-related occupations	4,340	2,930	1,410	100.0	67.5	32.5
Non-SEH occupations	5,210	3,440	1,760	100.0	66.2	33.8
State and local government	18,210	12,530	5,680	100.0	68.8	31.2
Science occupations	10,460	7,330	3,130	100.0	70.1	29.9
Biological, agricultural, or other life scientist	2,350	1,690	660	100.0	71.8	28.2
Computer and information scientist	870	720	150	100.0	82.3	17.7
Mathematical scientist	230	120	110	100.0	52.4	47.6
Physical scientist	2,490	2,220	270	100.0	89.3	10.7
Psychologist	3,350	1,890	1,450	100.0	56.6	43.4
Social scientist	1,170	690	480	100.0	58.8	41.2
Engineering occupations	1,850	1,460	390	100.0	78.9	21.1
SEH-related occupations	2,550	1,810	740	100.0	71.1	28.9
Non-SEH occupations	3,350	1,930	1,420	100.0	57.7	42.3
Self-employed ${ }^{\text {d }}$	39,620	23,600	16,020	100.0	59.6	40.4
Science occupations	24,360	12,590	11,770	100.0	51.7	48.3
Biological, agricultural, or other life scientist	2,110	1,510	600	100.0	71.5	28.5
Computer and information scientist	1,240	1,140	90	100.0	92.5	7.5
Mathematical scientist	480	340	140	100.0	70.9	29.1
Physical scientist	1,710	1,520	190	100.0	88.9	11.1
Psychologist	17,530	7,300	10,230	100.0	41.6	58.4
Social scientist	1,290	780	520	100.0	60.0	40.0
Engineering occupations	3,140	3,010	130	100.0	95.8	4.2
SEH-related occupations	2,380	1,650	730	100.0	69.3	30.7
Non-SEH occupations	9,730	6,350	3,390	100.0	65.2	34.8
Other sector ${ }^{\text {e }}$	1,430	1,050	390	100.0	73.1	26.9
Science occupations	1,040	740	290	100.0	71.7	28.3
Biological, agricultural, or other life scientist	100	S	80	100.0	S	78.6
Computer and information scientist	S	S	S	S	S	S
Mathematical scientist	S	S	S	S	S	S
Physical scientist	S	S	S	S	S	S
Psychologist	S	S	S	S	S	S
Social scientist	810	650	160	100.0	80.2	19.8
Engineering occupations	S	S	S	S	S	S
SEH-related occupations	80	S	S	100.0	S	S
Non-SEH occupations	290	250	S	100.0	87.7	S

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{\text {a }} 4$-year educational institution includes 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\text {b }}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 44. Employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006

Employment sector and occupation	All employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
	Number						
All sectors	621,630	4,130	105,830	18,870	18,190	473,610	1,010
Science occupations	371,210	2,480	57,280	10,840	11,820	288,140	650
Biological, agricultural, or other life scientist	116,010	830	21,630	2,630	3,590	87,140	190
Computer and information scientist	33,450	90	11,410	500	790	20,640	S
Mathematical scientist	24,220	S	5,550	620	820	17,200	S
Physical scientist	74,490	430	12,560	1,450	1,880	58,070	100
Psychologist	68,660	610	1,730	2,700	2,730	60,700	190
Social scientist	54,380	520	4,400	2,930	2,010	44,390	130
Engineering occupations	79,380	340	25,280	1,540	1,880	50,330	S
SEH-related occupations	66,110	450	9,980	2,500	1,610	51,390	180
Non-science and engineering occupations	104,930	860	13,290	3,990	2,870	83,750	170
4-year educational institutions ${ }^{\text {b }}$	271,540	1,850	38,260	10,380	9,370	211,270	420
Science occupations	192,420	1,370	26,330	6,710	6,900	150,730	370
Biological, agricultural, or other life scientist	68,600	470	11,830	1,760	2,390	52,090	60
Computer and information scientist	9,680	S	2,700	210	270	6,470	S
Mathematical scientist	15,730	S	3,070	450	570	11,630	S
Physical scientist	33,630	240	4,760	730	1,050	26,770	80
Psychologist	25,500	230	830	1,370	1,090	21,810	170
Social scientist	39,280	410	3,130	2,190	1,540	31,970	60
Engineering occupations	24,610	140	6,440	930	810	16,300	S
SEH-related occupations	25,360	90	3,070	1,130	670	20,360	S
Non-SEH occupations	29,160	250	2,410	1,610	990	23,880	S
Other educational institutions ${ }^{\text {c }}$	20,920	100	1,440	1,310	1,000	17,050	S
Science occupations	12,030	S	740	720	600	9,940	S
Biological, agricultural, or other life scientist	2,810	S	210	90	90	2,410	S
Computer and information scientist	180	S	S	S	S	150	S
Mathematical scientist	920	S	190	70	60	600	S
Physical scientist	2,640	S	130	110	80	2,330	S
Psychologist	3,740	S	110	290	310	3,020	S
Social scientist	1,730	S	70	160	70	1,420	S
Engineering occupations	290	S	150	S	S	130	S
SEH-related occupations	4,070	50	300	230	120	3,360	S
Non-SEH occupations	4,530	S	250	360	280	3,610	S
Private for-profit ${ }^{\text {d }}$	192,900	1,030	51,450	3,570	4,130	132,330	380
Science occupations	84,790	320	21,480	1,460	1,920	59,470	150
Biological, agricultural, or other life scientist	22,780	50	6,270	280	550	15,550	80
Computer and information scientist	19,340	S	7,790	270	430	10,800	S
Mathematical scientist	4,460	S	1,430	S	160	2,820	S
Physical scientist	23,790	130	5,510	390	370	17,380	S
Psychologist	10,680	70	110	410	260	9,810	S
Social scientist	3,740	S	360	60	140	3,110	S
Engineering occupations	42,370	130	16,590	400	780	24,470	S
SEH-related occupations	21,760	150	4,810	680	490	15,510	120
Non-SEH occupations	43,970	430	8,580	1,030	940	32,890	100
Private non-profit	38,560	200	5,140	940	1,010	31,210	50
Science occupations	21,580	140	3,070	480	600	17,250	S
Biological, agricultural, or other life scientist	6,820	S	1,330	90	180	5,180	S
Computer and information scientist	1,460	S	360	S	S	1,020	S
Mathematical scientist	1,050	S	190	S	S	830	S
Physical scientist	4,200	S	730	S	60	3,350	S
Psychologist	5,350	70	200	120	220	4,720	S
Social scientist	2,700	S	260	200	90	2,160	S
Engineering occupations	2,710	S	730	S	80	1,880	S
SEH-related occupations	5,570	S	790	180	120	4,430	S

TABLE 44. Employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006

Employment sector and occupation	All employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Non-SEH occupations	8,690	S	540	270	200	7,650	S
Federal government	38,450	260	4,840	1,210	960	31,090	80
Science occupations	24,530	210	3,410	740	660	19,430	80
Biological, agricultural, or other life scientist	10,420	150	1,700	320	210	8,020	S
Computer and information scientist	630	S	90	S	S	530	S
Mathematical scientist	1,350	S	480	S	S	790	S
Physical scientist	5,990	S	760	140	190	4,890	S
Psychologist	2,490	S	S	110	160	2,180	S
Social scientist	3,640	S	340	130	80	3,020	S
Engineering occupations	4,380	S	610	120	60	3,540	S
SEH-related occupations	4,340	S	440	150	S	3,690	S
Non-SEH occupations	5,210	S	380	200	190	4,430	S
State and local government	18,210	270	2,410	840	580	14,060	S
Science occupations	10,460	130	1,270	380	360	8,320	S
Biological, agricultural, or other life scientist	2,350	S	220	S	70	1,980	S
Computer and information scientist	870	S	300	S	S	570	S
Mathematical scientist	230	S	120	S	S	110	S
Physical scientist	2,490	S	390	50	80	1,940	S
Psychologist	3,350	60	160	170	180	2,770	S
Social scientist	1,170	S	80	120	S	950	S
Engineering occupations	1,850	S	540	S	70	1,170	S
SEH-related occupations	2,550	70	340	120	50	1,950	S
Non-SEH occupations	3,350	S	270	290	90	2,620	S
Self-employed ${ }^{\text {e }}$	39,620	370	2,020	600	1,080	35,540	S
Science occupations	24,360	270	770	350	730	22,240	S
Biological, agricultural, or other life scientist	2,110	90	70	S	100	1,810	S
Computer and information scientist	1,240	S	100	S	60	1,080	S
Mathematical scientist	480	S	S	S	S	420	S
Physical scientist	1,710	S	270	S	S	1,410	S
Psychologist	17,530	150	280	220	510	16,370	S
Social scientist	1,290	S	S	70	S	1,150	S
Engineering occupations	3,140	S	230	S	60	2,830	S
SEH-related occupations	2,380	S	220	S	110	2,010	S
Non-SEH occupations	9,730	70	800	220	180	8,460	S
Other sector ${ }^{\text {f }}$	1,430	S	260	S	60	1,060	S
Science occupations	1,040	S	200	S	S	750	S
Biological, agricultural, or other life scientist	100	S	S	S	S	90	S
Computer and information scientist	S	S	S	S	S	S	S
Mathematical scientist	S	S	S	S	S	S	S
Physical scientist	S	S	S	S	S	S	S
Psychologist	S	S	S	S	S	S	S
Social scientist	810	S	160	S	S	620	S
Engineering occupations	S	S	S	S	S	S	S
SEH-related occupations	80	S	S	S	S	70	S
Non-SEH occupations	290	S	60	S	S	220	S
	Percent						
All sectors	100.0	0.7	17.0	3.0	2.9	76.2	0.2
Science occupations	100.0	0.7	15.4	2.9	3.2	77.6	0.2
Biological, agricultural, or other life scientist	100.0	0.7	18.6	2.3	3.1	75.1	0.2
Computer and information scientist	100.0	0.3	34.1	1.5	2.4	61.7	S
Mathematical scientist	100.0	S	22.9	2.6	3.4	71.0	S
Physical scientist	100.0	0.6	16.9	1.9	2.5	78.0	0.1
Psychologist	100.0	0.9	2.5	3.9	4.0	88.4	0.3
Social scientist	100.0	1.0	8.1	5.4	3.7	81.6	0.2

TABLE 44. Employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006

Employment sector and occupation	All employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Engineering occupations	100.0	0.4	31.8	1.9	2.4	63.4	S
SEH-related occupations	100.0	0.7	15.1	3.8	2.4	77.7	0.3
Non-SEH occupations	100.0	0.8	12.7	3.8	2.7	79.8	0.2
4 -year educational institutions ${ }^{\text {b }}$	100.0	0.7	14.1	3.8	3.4	77.8	0.2
Science occupations	100.0	0.7	13.7	3.5	3.6	78.3	0.2
Biological, agricultural, or other life scientist	100.0	0.7	17.2	2.6	3.5	75.9	0.1
Computer and information scientist	100.0	S	27.9	2.2	2.8	66.9	S
Mathematical scientist	100.0	S	19.5	2.9	3.6	73.9	S
Physical scientist	100.0	0.7	14.2	2.2	3.1	79.6	0.2
Psychologist	100.0	0.9	3.3	5.4	4.3	85.5	0.7
Social scientist	100.0	1.0	8.0	5.6	3.9	81.4	0.2
Engineering occupations	100.0	0.6	26.2	3.8	3.3	66.2	S
SEH-related occupations	100.0	0.4	12.1	4.5	2.7	80.3	S
Non-SEH occupations	100.0	0.9	8.3	5.5	3.4	81.9	S
Other educational institutions ${ }^{\text {c }}$	100.0	0.5	6.9	6.3	4.8	81.5	S
Science occupations	100.0	S	6.2	6.0	5.0	82.7	S
Biological, agricultural, or other life scientist	100.0	S	7.6	3.3	3.1	85.8	S
Computer and information scientist	100.0	S	S	S	S	82.8	S
Mathematical scientist	100.0	S	20.9	7.5	6.2	65.4	S
Physical scientist	100.0	S	4.7	4.0	2.9	88.3	S
Psychologist	100.0	S	3.0	7.7	8.2	80.9	S
Social scientist	100.0	S	3.9	9.4	3.9	82.2	S
Engineering occupations	100.0	S	51.6	S	S	45.9	S
SEH-related occupations	100.0	1.3	7.4	5.7	2.9	82.7	S
Non-SEH occupations	100.0	S	5.5	7.9	6.1	79.6	S
Private for-profit ${ }^{\text {d }}$	100.0	0.5	26.7	1.9	2.1	68.6	0.2
Science occupations	100.0	0.4	25.3	1.7	2.3	70.1	0.2
Biological, agricultural, or other life scientist	100.0	0.2	27.5	1.2	2.4	68.3	0.4
Computer and information scientist	100.0	S	40.3	1.4	2.2	55.8	S
Mathematical scientist	100.0	S	32.2	S	3.5	63.2	S
Physical scientist	100.0	0.5	23.2	1.6	1.6	73.1	S
Psychologist	100.0	0.7	1.1	3.9	2.5	91.8	S
Social scientist	100.0	S	9.5	1.7	3.9	83.1	S
Engineering occupations	100.0	0.3	39.1	0.9	1.8	57.7	S
SEH-related occupations	100.0	0.7	22.1	3.1	2.3	71.3	0.5
Non-SEH occupations	100.0	1.0	19.5	2.3	2.1	74.8	0.2
Private non-profit	100.0	0.5	13.3	2.5	2.6	80.9	0.1
Science occupations	100.0	0.6	14.2	2.2	2.8	79.9	S
Biological, agricultural, or other life scientist	100.0	S	19.4	1.4	2.7	75.9	S
Computer and information scientist	100.0	S	24.9	S	S	70.0	S
Mathematical scientist	100.0	S	18.5	S	S	79.3	S
Physical scientist	100.0	S	17.4	S	1.5	79.7	S
Psychologist	100.0	1.4	3.8	2.3	4.2	88.2	S
Social scientist	100.0	S	9.5	7.4	3.3	79.8	S
Engineering occupations	100.0	S	26.9	S	3.1	69.3	S
SEH-related occupations	100.0	S	14.3	3.2	2.1	79.4	S
Non-SEH occupations	100.0	S	6.2	3.1	2.3	88.0	S
Federal government	100.0	0.7	12.6	3.1	2.5	80.8	0.2
Science occupations	100.0	0.9	13.9	3.0	2.7	79.2	0.3
Biological, agricultural, or other life scientist	100.0	1.4	16.3	3.1	2.0	77.0	S
Computer and information scientist	100.0	S	14.8	S	S	84.1	S
Mathematical scientist	100.0	S	35.9	S	S	58.2	S
Physical scientist	100.0	S	12.6	2.4	3.2	81.8	S
Psychologist	100.0	S	S	4.4	6.4	87.3	S

TABLE 44. Employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006

Employment sector and occupation	All employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Social scientist	100.0	S	9.4	3.6	2.1	83.0	S
Engineering occupations	100.0	S	13.9	2.8	1.5	80.7	S
SEH-related occupations	100.0	S	10.2	3.4	S	85.0	S
Non-SEH occupations	100.0	S	7.3	3.9	3.7	85.1	S
State and local government	100.0	1.5	13.3	4.6	3.2	77.2	S
Science occupations	100.0	1.2	12.2	3.6	3.5	79.5	S
Biological, agricultural, or other life scientist	100.0	S	9.4	S	2.8	84.4	S
Computer and information scientist	100.0	S	34.6	S	S	65.4	S
Mathematical scientist	100.0	S	50.8	S	S	46.4	S
Physical scientist	100.0	S	15.8	2.0	3.4	77.8	S
Psychologist	100.0	1.8	4.8	5.1	5.5	82.8	S
Social scientist	100.0	S	6.8	10.1	S	80.9	S
Engineering occupations	100.0	S	29.0	S	3.6	63.2	S
SEH-related occupations	100.0	2.6	13.2	4.8	2.2	76.7	S
Non-SEH occupations	100.0	S	8.0	8.8	2.8	78.3	S
Self-employed ${ }^{\text {e }}$	100.0	0.9	5.1	1.5	2.7	89.7	S
Science occupations	100.0	1.1	3.2	1.4	3.0	91.3	S
Biological, agricultural, or other life scientist	100.0	4.2	3.2	S	4.6	85.7	S
Computer and information scientist	100.0	S	8.0	S	4.5	87.5	S
Mathematical scientist	100.0	S	S	S	S	87.0	S
Physical scientist	100.0	S	15.6	S	S	82.4	S
Psychologist	100.0	0.8	1.6	1.3	2.9	93.4	S
Social scientist	100.0	S	S	5.1	S	88.6	S
Engineering occupations	100.0	S	7.3	S	1.9	90.0	S
SEH-related occupations	100.0	S	9.4	S	4.5	84.3	S
Non-SEH occupations	100.0	0.7	8.2	2.2	1.9	86.9	S
Other sector ${ }^{\text {f }}$	100.0	S	18.4	S	4.0	74.1	S
Science occupations	100.0	S	19.8	S	S	72.5	S
Biological, agricultural, or other life scientist	100.0	S	S	S	S	88.6	S
Computer and information scientist	100.0	S	S	S	S	S	S
Mathematical scientist	100.0	S	S	S	S	S	S
Physical scientist	100.0	S	S	S	S	S	S
Psychologist	100.0	S	S	S	S	S	S
Social scientist	100.0	S	19.1	S	S	75.8	S
Engineering occupations	100.0	S	S	S	S	S	S
SEH-related occupations	100.0	S	S	S	S	88.0	S
Non-SEH occupations	100.0	S	20.7	S	S	76.2	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science and engineering.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{c}$ Other educational institution includes 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{d}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
	Number										
All occupations	621,630	386,480	204,820	150,240	38,660	87,110	47,650	258,910	99,310	188,140	48,260
Science occupations	371,210	254,270	134,530	126,770	15,720	41,090	32,720	122,860	56,520	131,040	25,700
Biological, agricultural, or other life scientist	116,010	95,730	50,280	57,730	2,660	13,520	3,440	45,420	7,280	29,280	8,490
Agricultural/food scientist	9,090	7,780	6,280	1,960	280	2,510	240	4,050	720	190	1,200
Biochemist/biophysicist	14,750	13,830	6,630	9,280	470	2,670	540	6,450	430	290	1,080
Biological scientist	21,080	18,690	9,880	12,700	450	1,510	910	9,990	1,450	500	1,610
Forestry/conservation scientist	1,660	1,310	1,180	290	80	140	180	780	180	S	200
Medical scientist	35,610	32,110	19,330	18,310	1,090	5,280	950	15,750	3,310	750	2,330
Postsecondary teacher, agricultural/other natural sciences	4,470	3,050	2,470	560	S	180	S	960	130	4,040	150
Postsecondary teacher, biological sciences	24,670	14,690	2,310	12,180	S	410	200	5,510	630	23,350	1,600
Other biological/agricultural/life scientist	4,680	4,270	2,200	2,450	230	810	390	1,950	420	120	330
Computer and information scientist	33,450	21,160	9,960	3,890	5,030	6,370	17,800	9,140	850	7,050	2,030
Computer/information scientist	26,280	16,600	7,550	1,690	4,960	6,250	16,700	8,180	800	390	1,660
Postsecondary teacher, computer science	7,170	4,550	2,410	2,210	70	120	1,100	960	S	6,660	370
Mathematical scientist	24,220	17,430	8,520	8,950	1,430	1,420	3,910	4,750	840	13,610	1,610
Mathematical scientist	9,870	8,440	6,290	2,150	1,400	1,360	3,520	2,690	570	90	680
Postsecondary teacher, mathematics/statistics	14,360	8,990	2,230	6,790	S	60	390	2,070	270	13,520	930
Physical scientist	74,490	58,190	31,170	26,800	5,190	15,120	5,500	23,110	2,530	26,180	5,440
Chemist, except biochemist	22,330	19,530	13,710	4,920	1,640	9,410	470	8,960	710	400	2,290
Earth/atmospheric/ocean scientist	9,730	8,890	5,720	4,430	1,020	1,190	1,690	3,230	520	240	510
Physicist/astronomer	13,410	12,160	6,770	5,260	1,970	3,370	2,730	3,780	550	490	910
Postsecondary teacher, chemistry	11,800	5,650	1,090	4,490	60	80	100	3,040	200	11,300	990
Postsecondary teacher, physics	8,160	5,420	750	4,520	130	200	110	1,380	140	7,710	380
Postsecondary teacher, other physical sciences	6,430	4,410	1,540	2,830	S	140	180	1,490	100	5,920	180
Other physical scientist	2,630	2,140	1,590	350	360	720	220	1,220	310	110	170
Psychologist	68,660	22,090	12,360	9,280	500	2,290	530	25,890	41,680	21,780	4,390
Psychologist	51,090	12,620	8,860	3,550	440	2,090	450	22,520	40,080	4,740	3,080
Postsecondary teacher, psychology	17,570	9,470	3,500	5,730	60	200	80	3,370	1,600	17,050	1,320
Social scientist	54,380	39,670	22,230	20,120	900	2,380	1,540	14,550	3,340	33,130	3,730
Economist	7,600	6,170	5,290	1,920	250	510	850	3,340	1,370	200	690
Political scientist	1,600	1,340	850	820	50	100	S	800	150	110	140
Postsecondary teacher, economics	8,640	6,390	3,330	3,280	S	S	90	820	S	7,960	470
Postsecondary teacher, political science	8,390	5,490	1,460	3,910	S	100	S	1,390	180	8,230	550
Postsecondary teacher, sociology	7,510	4,930	1,490	3,310	S	110	S	1,300	140	7,280	480
Postsecondary teacher, other social sciences	9,610	6,400	2,290	4,080	S	200	70	1,680	270	8,890	700
Sociologist/anthropologist	4,160	3,540	2,850	1,400	140	380	150	2,170	300	170	180
Other social scientist	6,870	5,410	4,690	1,400	340	970	320	3,060	890	300	530

Occupation	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	$\begin{array}{r} \text { Basic } \\ \text { research } \end{array}$	Design	Development					
Engineering occupations	79,380	65,020	36,170	9,680	16,010	27,420	8,600	25,120	3,930	16,510	7,170
Aerospace/aeronautical/astronautical engineer	5,250	4,560	2,310	290	1,490	2,210	1,180	1,960	190	S	420
Chemical engineer	7,010	6,120	3,480	710	1,450	3,670	740	2,270	180	S	770
Civil/architectural/sanitary engineer	4,370	3,210	1,680	430	1,370	680	540	2,180	780	S	360
Electrical engineer	18,040	16,190	7,650	1,500	5,230	9,300	2,850	5,520	550	S	1,790
Materials/metallurgical engineer	920	740	280	S	330	390	70	360	80	S	120
Mechanical engineer	8,090	7,310	3,870	770	2,720	3,500	1,060	2,530	440	100	580
Postsecondary teacher, engineering	17,150	11,610	7,850	3,380	280	390	300	3,200	230	16,050	1,090
Other engineer	18,550	15,300	9,050	2,560	3,140	7,270	1,860	7,100	1,490	240	2,030
Science and engineering-related occupations	66,110	31,210	16,950	7,380	2,590	6,920	3,290	34,500	19,080	23,140	4,140
Health occupation, except postsecondary teacher	19,690	7,220	4,630	2,440	300	1,240	350	7,300	14,300	3,160	1,270
Postsecondary teacher, health and related sciences	16,940	8,890	5,200	3,250	S	450	60	4,140	2,470	16,280	840
SEH manager	22,790	13,090	6,420	1,430	1,510	4,350	840	21,320	2,120	170	1,290
SEH precollege teacher	3,550	220	70	80	S	90	S	890	80	3,480	470
SEH technician/technologist	2,850	1,590	500	170	610	800	1,920	700	80	60	270
Other SEH-related occupation	300	200	130	S	130	S	80	160	S	S	S
Non-science and engineering occupations	104,930	35,980	17,170	6,410	4,340	11,670	3,040	76,430	19,780	17,450	11,240
Arts/humanities-related occupation	5,170	2,060	820	650	160	790	220	2,150	2,670	400	910
Management-related occupation	22,290	8,150	3,580	750	1,800	3,240	1,060	17,510	4,630	830	2,550
Non-SEH manager	41,920	14,710	6,660	1,820	1,700	5,680	1,150	38,830	3,440	700	3,310
Non-SEH postsecondary teacher	12,130	6,560	3,960	2,510	S	300	S	2,570	710	11,520	1,030
Non-SEH precollege/other teacher	2,600	290	110	90	S	90	S	800	350	2,280	220
Sales/marketing occupation	8,010	1,890	870	50	280	850	260	7,360	1,130	160	570
Social service-related occupation	3,940	550	230	120	70	200	S	1,940	2,660	1,060	590
Other non-SEH occupation	8,860	1,770	940	410	300	510	290	5,280	4,190	510	2,060
	Percent										
All occupations	100.0	62.2	32.9	24.2	6.2	14.0	7.7	41.7	16.0	30.3	7.8
Science occupations	100.0	68.5	36.2	34.1	4.2	11.1	8.8	33.1	15.2	35.3	6.9
Biological, agricultural, or other life scientist	100.0	82.5	43.3	49.8	2.3	11.7	3.0	39.2	6.3	25.2	7.3
Agricultural/food scientist	100.0	85.6	69.1	21.6	3.0	27.6	2.7	44.5	7.9	2.1	13.2
Biochemist/biophysicist	100.0	93.7	44.9	62.9	3.2	18.1	3.7	43.7	2.9	2.0	7.3
Biological scientist	100.0	88.7	46.9	60.3	2.1	7.2	4.3	47.4	6.9	2.4	7.6
Forestry/conservation scientist	100.0	79.1	71.0	17.5	4.5	8.3	10.6	46.8	11.0	S	11.9
Medical scientist	100.0	90.2	54.3	51.4	3.0	14.8	2.7	44.2	9.3	2.1	6.5
Postsecondary teacher, agricultural/other natural sciences	100.0	68.1	55.2	12.4	S	4.0	S	21.4	2.8	90.3	3.4
Postsecondary teacher, biological sciences	100.0	59.6	9.4	49.4	S	1.7	0.8	22.3	2.6	94.6	6.5
Other biological/agriculturallife scientist	100.0	91.3	47.1	52.4	5.0	17.3	8.4	41.6	9.0	2.5	7.0
Computer and information scientist	100.0	63.2	29.8	11.6	15.0	19.0	53.2	27.3	2.5	21.1	6.1
Computer/information scientist	100.0	63.2	28.7	6.4	18.9	23.8	63.6	31.1	3.0	1.5	6.3

Occupation	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Postsecondary teacher, computer science	100.0	63.5	33.6	30.8	1.0	1.6	15.3	13.4	S	92.9	5.2
Mathematical scientist	100.0	72.0	35.2	36.9	5.9	5.9	16.2	19.6	3.5	56.2	6.7
Mathematical scientist	100.0	85.5	63.8	21.8	14.2	13.8	35.7	27.2	5.8	0.9	6.9
Postsecondary teacher, mathematics/statistics	100.0	62.6	15.5	47.3	S	0.4	2.7	14.4	1.9	94.1	6.5
Physical scientist	100.0	78.1	41.8	36.0	7.0	20.3	7.4	31.0	3.4	35.1	7.3
Chemist, except biochemist	100.0	87.4	61.4	22.0	7.4	42.2	2.1	40.1	3.2	1.8	10.3
Earth/atmospheric/ocean scientist	100.0	91.4	58.8	45.6	10.5	12.2	17.4	33.2	5.4	2.5	5.2
Physicist/astronomer	100.0	90.7	50.5	39.3	14.7	25.2	20.3	28.2	4.1	3.7	6.8
Postsecondary teacher, chemistry	100.0	47.9	9.3	38.1	0.5	0.6	0.8	25.8	1.7	95.8	8.4
Postsecondary teacher, physics	100.0	66.4	9.2	55.4	1.6	2.5	1.4	17.0	1.7	94.4	4.6
Postsecondary teacher, other physical sciences	100.0	68.5	23.9	43.9	S	2.2	2.8	23.2	1.5	92.0	2.8
Other physical scientist	100.0	81.2	60.2	13.2	13.6	27.3	8.2	46.2	11.7	4.3	6.6
Psychologist	100.0	32.2	18.0	13.5	0.7	3.3	0.8	37.7	60.7	31.7	6.4
Psychologist	100.0	24.7	17.3	6.9	0.9	4.1	0.9	44.1	78.5	9.3	6.0
Postsecondary teacher, psychology	100.0	53.9	19.9	32.6	0.3	1.2	0.5	19.2	9.1	97	7.5
Social scientist	100.0	73.0	40.9	37.0	1.7	4.4	2.8	26.7	6.2	60.9	6.9
Economist	100.0	81.2	69.6	25.3	3.3	6.7	11.2	43.9	18.0	2.6	9.1
Political scientist	100.0	83.8	52.9	50.9	3.2	5.9	S	49.6	9.5	6.7	9.0
Postsecondary teacher, economics	100.0	74.0	38.5	37.9	S	S	1.0	9.6	S	92.2	5.4
Postsecondary teacher, political science	100.0	65.4	17.4	46.6	S	1.2	S	16.6	2.2	98.1	6.6
Postsecondary teacher, sociology	100.0	65.6	19.8	44.1	S	1.4	S	17.3	1.9	96.9	6.3
Postsecondary teacher, other social sciences	100.0	66.6	23.8	42.4	S	2.1	0.7	17.5	2.8	92.6	7.3
Sociologist/anthropologist	100.0	85.1	68.5	33.5	3.4	9.1	3.7	52.0	7.2	4.0	4.3
Other social scientist	100.0	78.7	68.2	20.4	4.9	14.2	4.7	44.5	12.9	4.3	7.7
Engineering occupations	100.0	81.9	45.6	12.2	20.2	34.5	10.8	31.6	5.0	20.8	9.0
Aerospace/aeronautical/astronautical engineer	100.0	86.9	44.0	5.5	28.4	42.1	22.6	37.4	3.6	S	8.0
Chemical engineer	100.0	87.2	49.6	10.1	20.7	52.4	10.5	32.3	2.5	S	11.0
Civil/architectural/sanitary engineer	100.0	73.3	38.5	9.8	31.4	15.5	12.4	50.0	17.7	S	8.3
Electrical engineer	100.0	89.7	42.4	8.3	29.0	51.5	15.8	30.6	3.0	S	9.9
Materials/metallurgical engineer	100.0	80.2	30.9	S	36.2	42.9	7.1	39.3	9.2	S	13.2
Mechanical engineer	100.0	90.4	47.8	9.5	33.6	43.3	13.1	31.3	5.5	1.2	7.1
Postsecondary teacher, engineering	100.0	67.7	45.8	19.7	1.6	2.3	1.7	18.6	1.3	93.6	6.4
Other engineer	100.0	82.5	48.8	13.8	16.9	39.2	10.0	38.3	8.0	1.3	11.0
Science and engineering-related occupations	100.0	47.2	25.6	11.2	3.9	10.5	5.0	52.2	28.9	35.0	6.3
Health occupation, except postsecondary teacher	100.0	36.7	23.5	12.4	1.5	6.3	1.8	37.1	72.6	16.1	6.5
Postsecondary teacher, health and related sciences	100.0	52.5	30.7	19.2	S	2.6	0.3	24.4	14.6	96.1	5.0
SEH manager	100.0	57.4	28.2	6.3	6.6	19.1	3.7	93.5	9.3	0.8	5.7
SEH precollege teacher	100.0	6.2	2.0	2.3	S	2.5	S	25.2	2.1	98.0	13.1
SEH technician/technologist	100.0	55.9	17.7	6.1	21.5	28.0	67.4	24.5	2.9	2.0	9.6

TABLE 45. Employed doctoral scientists and engineers, by occupation and primary or secondary work activity: 2006

Occupation	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Other SEH-related occupation	100.0	68.2	43.2	S	44.5	S	25.8	55.3	S	S	S
Non-science and engineering occupations	100.0	34.3	16.4	6.1	4.1	11.1	2.9	72.8	18.8	16.6	10.7
Arts/humanities-related occupation	100.0	39.9	15.8	12.6	3.2	15.3	4.3	41.5	51.7	7.8	17.5
Management-related occupation	100.0	36.6	16.1	3.4	8.1	14.5	4.7	78.6	20.8	3.7	11.5
Non-SEH manager	100.0	35.1	15.9	4.3	4.1	13.5	2.7	92.6	8.2	1.7	7.9
Non-SEH postsecondary teacher	100.0	54.1	32.6	20.7	S	2.5	S	21.1	5.8	95.0	8.5
Non-SEH precollege/other teacher	100.0	11.1	4.1	3.4	S	3.5	S	30.6	13.4	87.4	8.4
Sales/marketing occupation	100.0	23.6	10.9	0.6	3.5	10.7	3.2	91.9	14.1	2.0	7.2
Social service-related occupation	100.0	13.9	5.9	3.0	1.8	5.2	S	49.1	67.6	26.9	15.0
Other non-SEH occupation	100.0	20.0	10.6	4.7	3.4	5.7	3.3	59.6	47.3	5.7	23.3

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
 work the most hours during a typical week on this job?"

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Employer location	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
East South Central	24,150	14,160	4,820	870	910	2,950	2,650	1,960	3,250	2,790	3,950
Alabama	5,900	3,510	1,160	220	230	790	660	450	980	720	690
Kentucky	4,960	3,010	1,030	200	320	390	560	520	380	650	930
Mississippi	3,310	1,850	830	120	70	440	190	200	450	410	600
Tennessee	9,980	5,800	1,810	330	290	1,330	1,250	790	1,440	1,010	1,730
West South Central	48,740	27,500	9,230	2,620	1,520	5,740	4,850	3,530	7,840	5,780	7,620
Arkansas	2,840	1,780	860	60	120	290	140	310	250	400	410
Louisiana	5,480	3,480	1,470	200	170	580	680	380	540	790	660
Oklahoma	4,420	2,970	800	220	110	770	630	440	530	310	610
Texas	36,000	19,270	6,100	2,140	1,120	4,110	3,400	2,390	6,520	4,270	5,940
Mountain	43,570	25,300	7,170	1,730	1,880	7,300	3,920	3,310	7,060	3,870	7,340
Arizona	8,410	4,410	1,220	260	250	1,150	760	770	1,650	840	1,510
Colorado	13,150	8,260	2,140	600	560	2,530	1,440	990	1,630	1,030	2,230
Idaho	2,840	1,350	460	80	80	260	310	160	610	310	570
Montana	1,990	1,460	600	S	180	310	260	120	170	160	200
New Mexico	8,300	4,470	1,000	440	300	1,980	390	360	1,820	730	1,280
Nevada	2,620	1,530	350	50	160	510	240	220	300	330	460
Utah	5,520	3,280	1,230	270	300	490	390	590	800	410	1,030
Wyoming	730	540	170	S	50	70	120	90	70	S	80
Pacific	116,510	66,280	21,090	8,830	3,330	13,540	11,460	8,030	18,370	11,750	20,110
Alaska	1,110	790	380	70	S	170	S	140	80	80	160
California	87,370	48,310	14,400	6,540	2,470	10,740	8,870	5,290	14,810	8,590	15,650
Hawaii	2,850	2,000	660	160	90	410	310	360	150	150	550
Oregon	8,270	4,560	1,600	600	270	660	750	680	1,660	940	1,110
Washington	16,920	10,620	4,050	1,460	480	1,560	1,510	1,560	1,670	2,000	2,640
Puerto Rico	1,690	1,170	400	S	60	260	340	80	70	100	340
Other U.S. territories and other areas	1,490	800	190	S	90	110	200	190	190	60	440
	Percent										
All locations	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
New England	8.4	8.8	9.5	8.5	6.9	7.6	9.5	9.0	7.5	7.9	8.1
Connecticut	1.7	1.8	2.0	0.9	1.1	1.8	2.3	1.3	1.3	1.8	1.6
Maine	0.4	0.4	0.4	0.3	S	0.3	0.6	0.7	0.3	0.3	0.4
Massachusetts	5.2	5.5	6.2	6.0	4.7	4.6	5.3	5.3	4.5	4.9	5.0
New Hampshire	0.4	0.4	0.3	0.6	0.3	0.4	0.4	0.4	0.5	0.2	0.4

Employer location	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
Rhode Island	0.5	0.5	0.3	0.4	0.7	0.4	0.6	0.7	0.5	0.6	0.5
Vermont	0.3	0.3	0.3	0.2	S	0.2	0.3	0.6	0.3	0.2	0.2
Middle Atlantic	15.4	15.7	13.8	17.5	17.6	15.7	17.7	15.4	12.1	16.5	16.1
New Jersey	3.3	3.3	2.7	5.6	4.2	4.1	2.6	2.5	3.0	3.7	3.5
New York	7.4	7.5	6.2	7.9	8.3	6.3	10.1	7.8	5.3	7.9	8.2
Pennsylvania	4.7	4.9	4.9	4.1	5.1	5.3	5.0	5.0	3.7	4.9	4.3
East North Central	13.2	13.3	12.5	11.0	14.8	13.3	14.4	14.7	14.3	12.9	12.0
Illinois	3.9	3.9	3.6	4.3	4.5	3.6	3.6	4.6	3.6	3.8	4.1
Indiana	1.6	1.7	1.7	0.9	2.1	1.7	1.3	2.2	1.7	1.5	1.3
Michigan	2.9	2.9	2.4	2.4	3.2	2.9	3.7	2.9	4.4	2.6	1.9
Ohio	3.3	3.3	3.3	2.3	3.2	3.3	3.8	3.3	3.5	3.4	3.1
Wisconsin	1.5	1.6	1.5	1.1	1.9	1.6	2.0	1.7	1.2	1.5	1.5
West North Central	5.7	5.8	6.9	2.6	5.2	5.2	6.3	5.7	5.0	7.1	5.3
Iowa	0.8	0.8	0.9	0.4	1.5	0.8	0.7	0.9	0.6	0.9	0.7
Kansas	0.7	0.7	0.9	0.4	0.5	0.4	0.9	0.9	0.8	0.5	0.6
Minnesota	1.9	1.7	1.9	0.9	1.0	1.8	2.1	1.7	1.9	2.8	1.9
Missouri	1.5	1.4	1.9	0.4	1.5	1.3	1.3	1.2	1.3	2.1	1.5
Nebraska	0.2	0.3	0.4	S	0.2	0.2	0.3	0.1	0.2	0.3	0.1
North Dakota	0.5	0.6	0.8	S	0.2	0.6	0.6	0.6	0.2	0.3	0.3
South Dakota	0.2	0.2	0.2	0.2	0.2	0.1	0.3	0.2	S	0.2	0.2
South Atlantic	19.3	20.0	20.2	18.3	23.2	18.2	18.0	23.8	14.8	18.7	20.7
Delaware	0.5	0.5	0.5	0.9	0.3	0.8	0.4	0.2	0.5	0.3	0.6
District of Columbia	2.1	2.1	0.9	0.9	1.3	1.2	1.4	8.1	1.0	1.5	3.5
Florida	2.8	2.8	2.5	3.3	2.7	2.1	3.9	2.8	2.8	3.0	2.8
Georgia	2.1	2.3	2.5	1.7	2.2	1.9	2.2	2.8	1.2	1.8	2.1
Maryland	4.2	4.5	6.3	3.9	5.6	4.7	2.7	2.8	3.0	4.5	3.8
North Carolina	3.0	3.2	4.2	2.4	3.8	2.7	3.0	2.6	1.5	3.9	2.9
South Carolina	1.0	0.9	1.0	0.4	1.2	1.0	1.1	0.8	1.0	0.9	1.0
Virginia	3.2	3.1	1.9	4.9	5.6	3.3	3.1	3.3	3.5	2.5	3.7
West Virginia	0.3	0.4	0.4	S	0.5	0.4	0.3	0.4	0.4	0.3	0.1
East South Central	3.9	3.8	4.2	2.6	3.8	4.0	3.9	3.6	4.1	4.2	3.8
Alabama	0.9	0.9	1.0	0.7	1.0	1.1	1.0	0.8	1.2	1.1	0.7
Kentucky	0.8	0.8	0.9	0.6	1.3	0.5	0.8	0.9	0.5	1.0	0.9
Mississippi	0.5	0.5	0.7	0.4	0.3	0.6	0.3	0.4	0.6	0.6	0.6
Tennessee	1.6	1.6	1.6	1.0	1.2	1.8	1.8	1.5	1.8	1.5	1.6
West South Central	7.8	7.4	8.0	7.8	6.3	7.7	7.1	6.5	9.9	8.7	7.3

Employer location	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
Arkansas	0.5	0.5	0.7	0.2	0.5	0.4	0.2	0.6	0.3	0.6	0.4
Louisiana	0.9	0.9	1.3	0.6	0.7	0.8	1.0	0.7	0.7	1.2	0.6
Oklahoma	0.7	0.8	0.7	0.7	0.4	1.0	0.9	0.8	0.7	0.5	0.6
Texas	5.8	5.2	5.3	6.4	4.6	5.5	4.9	4.4	8.2	6.5	5.7
Mountain	7.0	6.8	6.2	5.2	7.8	9.8	5.7	6.1	8.9	5.9	7.0
Arizona	1.4	1.2	1.1	0.8	1.0	1.5	1.1	1.4	2.1	1.3	1.4
Colorado	2.1	2.2	1.8	1.8	2.3	3.4	2.1	1.8	2.1	1.6	2.1
Idaho	0.5	0.4	0.4	0.2	0.3	0.3	0.5	0.3	0.8	0.5	0.5
Montana	0.3	0.4	0.5	S	0.7	0.4	0.4	0.2	0.2	0.2	0.2
New Mexico	1.3	1.2	0.9	1.3	1.2	2.7	0.6	0.7	2.3	1.1	1.2
Nevada	0.4	0.4	0.3	0.2	0.7	0.7	0.4	0.4	0.4	0.5	0.4
Utah	0.9	0.9	1.1	0.8	1.2	0.7	0.6	1.1	1.0	0.6	1.0
Wyoming	0.1	0.1	0.2	S	0.2	0.1	0.2	0.2	0.1	S	0.1
Pacific	18.7	17.9	18.2	26.4	13.8	18.2	16.7	14.8	23.1	17.8	19.2
Alaska	0.2	0.2	0.3	0.2	S	0.2	S	0.3	0.1	0.1	0.2
California	14.1	13.0	12.4	19.5	10.2	14.4	12.9	9.7	18.7	13.0	14.9
Hawaii	0.5	0.5	0.6	0.5	0.4	0.6	0.5	0.7	0.2	0.2	0.5
Oregon	1.3	1.2	1.4	1.8	1.1	0.9	1.1	1.2	2.1	1.4	1.1
Washington	2.7	2.9	3.5	4.4	2.0	2.1	2.2	2.9	2.1	3.0	2.5
Puerto Rico	0.3	0.3	0.3	S	0.3	0.4	0.5	0.1	0.1	0.2	0.3
Other U.S. territories and other areas	0.2	0.2	0.2	S	0.4	0.1	0.3	0.4	0.2	0.1	0.4

- suppressed for reliability or confidentiality.

NOTES: Because survey sample design does not include geography, reliability of estimates in some states may be poor due to small sample size. Numbers are rounded to nearest 10 . Detail may not add to total because of rounding.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 47. Employed doctoral scientists and engineers, by selected demographic characteristics and broad occupation: 2006

TABLE 47. Employed doctoral scientists and engineers, by selected demographic characteristics and broad occupation: 2006
(Percent distribution)

Characteristic	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
Place of birth ${ }^{\text {b }}$											
United States	74.0	75.7	73.6	54.0	63.2	74.6	92.2	80.0	55.2	77.2	80.1
Europe	4.4	4.7	4.6	6.2	7.7	5.1	2.6	4.8	4.9	3.6	3.8
Asia	17.1	15.1	17.7	35.0	23.0	16.2	2.1	8.8	34.7	14.6	12.5
North America	0.9	1.1	0.9	1.2	0.8	0.9	1.1	1.4	0.7	0.9	0.7
Central America	0.4	0.4	0.5	0.2	0.5	0.4	0.2	0.5	0.4	0.4	0.4
Caribbean	0.4	0.4	0.3	0.3	0.4	0.4	0.6	0.7	0.4	0.5	0.3
South America	0.9	0.9	0.9	1.0	1.6	0.8	0.7	1.2	0.9	1.1	0.6
Africa	1.2	1.1	1.1	1.1	1.8	1.0	0.2	1.8	1.9	1.4	1.2
Oceania	0.6	0.6	0.5	0.9	1.1	0.5	0.2	0.8	0.9	0.5	0.4

${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\text {b }}$ Percentages are based on persons who reported place of birth. Persons who did not specify place of birth are included in total but not shown separately.
NOTES: Numbers are rounded to nearest 10 . Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 48. Employed doctoral scientists and engineers, by field of doctorate: 2006
(Percent distribution)

Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Science occupations ${ }^{\text {a }}$			Engineering occupations			Science and engineering-related occupations				Non-science and engineering occupations			
		Total	Postsecondary teacher	Other	Total	Postsecondary teacher	Other	Total	Health occupation	$\begin{array}{r} \text { SEH } \\ \text { manager } \end{array}$	Other	Total	Non-SEH manager	Non-SEH teacher	Other
All fields	621,630	59.7	20.7	39.0	12.8	2.8	10.0	10.6	5.9	3.7	1.1	16.9	6.7	2.4	7.8
Science	488,860	71.0	25.6	45.3	2.5	0.4	2.1	9.0	4.6	3.2	1.1	17.5	6.6	2.6	8.3
Biological, agricultural, and															
environmental life sciences	155,990	68.1	19.6	48.4	1.1	0.2	0.9	16.2	10.9	4.3	1.0	14.6	6.0	0.8	7.9
Agricultural/food sciences	16,850	71.1	22.0	49.1	1.3	0.2	1.2	7.4	2.6	4.0	0.8	20.1	10.2	0.4	9.5
Biochemistry/biophysics	24,190	66.9	15.1	51.8	1.2	0.3	0.9	15.9	9.7	4.8	1.4	16.0	6.7	0.5	8.8
Cell/molecular biology	16,920	71.5	16.2	55.2	0.3	S	0.3	15.5	10.7	4.0	0.8	12.7	4.1	0.5	8.1
Environmental life sciences	6,190	69.2	22.3	46.8	7.2	1.5	5.7	7.0	0.3	6.2	0.5	16.7	7.9	2.9	5.8
Microbiology	10,990	64.9	17.1	47.8	0.7	S	0.7	16.5	11.3	4.7	0.5	17.9	7.2	0.5	10.2
Zoology	9,720	74.1	37.0	37.1	0.9	0.1	0.9	9.0	3.5	3.5	2.1	15.9	6.7	1.3	7.9
Other biological sciences	71,120	66.5	19.2	47.3	0.7	0.2	0.5	20.3	15.3	4.1	1.0	12.4	4.7	0.8	6.9
Computer and information sciences	13,580	79.3	29.8	49.4	4.1	1.1	3.0	6.3	0.8	4.2	1.3	10.3	5.2	1.7	3.4
Mathematics and statistics	29,170	77.2	47.3	29.9	4.6	1.3	3.4	3.5	0.4	1.0	2.2	14.6	5.5	3.4	5.7
Physical sciences	113,330	70.5	21.4	49.0	7.0	0.7	6.2	8.2	1.4	4.8	2.0	14.3	6.1	0.6	7.7
Astronomy/astrophysics	4,240	85.9	29.0	56.9	6.0	S	6.0	4.3	0.7	2.9	0.8	3.7	0.7	0.5	2.5
Chemistry, except biochemistry	57,450	68.4	18.7	49.7	4.6	0.3	4.3	9.1	2.1	5.2	1.7	17.9	7.3	0.6	9.9
Earth/atmospheric/ocean sciences	17,340	80.2	31.1	49.1	3.0	0.5	2.5	5.0	0.4	3.3	1.4	11.9	5.6	0.6	5.7
Physics	34,310	67.1	20.3	46.8	13.0	1.6	11.4	8.9	0.9	5.2	2.9	11.0	5.0	0.6	5.5
Psychology	96,570	77.7	19.2	58.5	0.4	0.1	0.4	4.6	2.0	2.3	0.2	17.3	5.8	3.1	8.3
Social sciences	80,220	65.5	42.3	23.2	0.5	0.1	0.4	3.6	2.3	0.6	0.7	30.4	9.8	8.5	12.1
Economics	21,780	74.7	38.6	36.1	0.3	0.1	0.2	1.4	0.5	0.5	0.4	23.5	9.8	5.3	8.4
Political sciences	18,010	65.3	49.8	15.5	0.3	S	0.3	2.4	1.4	0.4	0.6	31.9	13.9	4.6	13.4
Sociology	14,960	68.8	48.2	20.6	0.2	S	0.2	5.3	4.5	0.7	0.2	25.7	10.3	7.1	8.3
Other social sciences	25,470	55.8	36.7	19.1	1.0	0.2	0.8	5.2	3.1	0.9	1.3	37.9	6.8	14.8	16.4
Engineering	106,520	15.9	2.6	13.3	62.8	14.3	48.4	7.6	0.9	5.5	1.2	13.7	7.1	0.8	5.8
Aerospace/aeronautical/astronautical engineering	4,750	10.0	1.2	8.8	72.1	15.5	56.5	5.6	1.1	4.6	S	12.3	5.8	0.4	6.0
Chemical engineering	14,210	12.6	1.5	11.1	59.9	9.2	50.7	10.7	1.6	6.7	2.4	16.8	5.6	0.8	10.4
Civil engineering	9,530	8.7	1.2	7.4	75.8	25.9	49.9	7.3	S	7.0	0.3	8.2	5.3	0.5	2.5
Electrical/computer engineering	30,080	20.7	3.6	17.1	60.6	14.9	45.7	5.9	0.6	4.2	1.1	12.8	8.2	0.4	4.2
Materials/metallurgical engineering	11,000	13.0	1.7	11.3	64.6	7.9	56.7	8.9	0.3	7.0	1.7	13.5	7.0	0.2	6.3

TABLE 48. Employed doctoral scientists and engineers, by field of doctorate: 2006
(Percent distribution)

Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Science occupations ${ }^{\text {a }}$			Engineering occupations			Science and engineering-related occupations				Non-science and engineering occupations			
		Total	Postsecondary teacher	Other	Total	secondary teacher	Other	Total	Health occupation	$\begin{array}{r} \text { SEH } \\ \text { manager } \end{array}$	Other	Total	Non-SEH manager	Non-SEH teacher	Other
Mechanical engineering	15,030	10.9	1.2	9.8	69.8	15.8	54.0	7.5	0.5	5.6	1.4	11.7	6.9	0.2	4.7
Other engineering	21,910	20.7	4.1	16.6	54.1	13.8	40.3	7.8	2.1	5.1	0.6	17.4	8.0	2.3	7.1
Health	26,250	27.9	2.9	25.0	0.6	0.1	0.5	54.3	49.3	4.8	0.2	17.1	8.7	3.6	4.9

$\mathrm{S}=$ suppressed for reliability or confidentiality.

SEH = science, engineering, and health.

${ }^{a}$ Further detail for science occupations can be found in table 49.
NOTES: Numbers are rounded to nearest 10 . Detail may not add to total because of rounding
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 49. Employed doctoral scientists and engineers working in science occupations, by field of doctorate: 2006
(Percent distribution)

Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Biological, agricultural, and other life scientist			Computer and information scientist			Mathematical scientist			Physical scientist			Psychologist			Social scientist		
		Total	Postsecondary teacher	Other															
All fields	371,210	18.7	4.7	14.0	5.4	1.2	4.2	3.9	2.3	1.6	12.0	4.2	7.7	11.0	2.8	8.2	8.7	5.5	3.3
Science	346,930	22.1	5.8	16.3	5.0	1.2	3.8	4.6	2.8	1.7	14.4	5.2	9.2	14.0	3.6	10.4	10.9	6.9	3.9
Biological, agricultural, and																			
Agricultural/food sciences	11,980	65.0	20.4	44.7	1.4	S	1.2	0.4	S	0.4	3.6	1.4	2.2	S	S	S	0.7	S	0.5
Biochemistry/biophysics	16,190	58.4	11.2	47.2	1.1	S	1.1	0.4	S	0.4	6.6	3.9	2.7	S	S	S	0.4	S	0.4
Cell/molecular biology	12,090	68.9	15.6	53.3	1.2	S	1.2	S	S	S	0.9	0.6	0.3	S	S	S	S	S	S
Environmental life sciences	4,280	47.9	14.0	33.9	1.1	S	0.8	0.9	S	S	13.7	5.3	8.4	S	S	S	5.3	2.1	3.2
Microbiology	7,130	62.6	15.8	46.8	0.9	S	0.7	S	S	S	1.0	0.8	S	S	S	S	S	S	S
Zoology	7,200	68.9	34.0	34.8	1.0	S	1.0	0.8	S	S	2.7	2.3	S	S	S	S	0.6	S	S
Other biological sciences	47,310	61.1	17.5	43.6	1.3	0.1	1.1	2.2	0.7	1.5	1.3	0.6	0.7	0.3	0.3	S	0.3	S	0.3
Computer and information sciences	10,760	0.5	S	0.5	77.3	29.4	47.9	1.2	S	1.0	S	S	S	S	S	S	S	S	S
Mathematics and statistics	22,520	0.9	S	0.8	12.4	3.4	8.9	61.9	43.3	18.6	1.0	0.2	0.8	S	S	S	0.9	0.3	0.5
Physical sciences	79,850	7.0	0.8	6.2	5.0	0.3	4.7	0.9	0.4	0.6	57.3	20.0	37.3	0.1	S	S	0.2	S	0.2
Astronomy/astrophysics	3,640	S	S	S	8.3	S	8.3	S	S	S	76.8	28.4	48.4	S	S	S	S	S	S
Chemistry, except biochemistry	39,290	9.6	0.6	9.0	2.4	S	2.3	0.3	0.1	0.2	56.0	17.9	38.1	S	S	S	0.1	S	0.1
Earth/atmospheric/ocean sciences	13,900	6.3	1.7	4.6	2.5	S	2.3	0.8	0.5	0.3	70.3	28.5	41.8	S	S	S	0.3	S	S
Physics	23,020	3.8	0.6	3.2	10.3	0.8	9.5	2.2	0.8	1.4	50.3	18.1	32.3	0.1	S	S	0.3	S	0.3
Psychology	75,060	2.4	0.4	2.0	1.3	0.2	1.1	0.6	0.1	0.5	S	S	S	70.0	17.6	52.3	3.4	0.9	2.5
Social sciences	52,540	1.0	0.3	0.7	1.8	0.3	1.5	0.9	0.2	0.6	0.9	0.6	0.3	0.5	0.2	0.3	60.4	40.7	19.8
Economics	16,280	0.5	S	0.3	1.2	0.3	0.9	1.9	0.6	1.3	S	S	S	S	S	S	71.0	37.6	33.3
Political sciences	11,770	S	S	S	1.6	S	1.4	S	S	S	0.4	0.4	S	0.4	S	S	63.0	49.1	13.9
Sociology	10,300	0.7	S	0.5	1.4	S	1.2	1.1	S	0.9	S	S	S	S	S	S	65.3	47.5	17.8
Other social sciences	14,200	2.4	0.7	1.7	2.8	0.5	2.3	0.4	S	0.3	2.3	1.6	0.7	1.1	0.5	0.5	46.8	33.3	13.5
Engineering	16,940	2.3	0.2	2.1	8.3	1.1	7.2	1.4	0.4	1.0	3.5	0.7	2.8	S	S	S	0.3	0.1	0.2
Aerospace/aeronautical/ astronautical engineering	480	S	S	S	4.8	S	4.8	2.0	S	1.5	2.2	S	2.0	S	S	S	S	S	S
Chemical engineering	1,790	3.6	S	3.4	2.8	S	2.8	1.2	S	1.0	4.9	1.1	3.8	S	S	S	S	S	S
Civil engineering	820	S	S	S	3.4	S	3.4	1.2	S	0.9	3.2	0.8	2.4	S	S	S	S	S	S
Electrical/computer engineering	6,240	0.3	S	0.3	17.3	2.9	14.4	0.9	0.4	0.5	2.0	0.3	1.7	S	S	S	0.2	S	S
Materials/metallurgical engineering	1,430	1.3	S	1.3	3.3	S	3.2	S	S	S	8.1	1.5	6.6	S	S	S	S	S	S

TABLE 49. Employed doctoral scientists and engineers working in science occupations, by field of doctorate: 2006
(Percent distribution)

		Biological, agricultural, and other life scientist			Computer and information scientist			Mathematical scientist			Physical scientist			Psychologist			Social scientist		
Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Total		Other	Total	Postsecondary teacher	Other	Total	Postsecondary teacher	Other	Total	Postsecondary teacher	Other	Total		Other	Total	Post- secondary secondary teacher	Other
Mechanical engineering	1,640	1.3	S	1.0	7.3	0.4	6.9	0.7	S	0.6	1.6	S	1.3	S	S	S	S	S	s
Other engineering	4,540	6.7	0.7	6.1	5.8	1.2	4.5	3.2	0.8	2.4	4.3	1.1	3.2	S	S	S	0.7	0.3	0.4
Health	7,330	20.5	1.3	19.2	0.7	S	0.7	1.1	0.3	0.8	1.1	0.3	0.9	1.0	0.4	0.6	3.5	0.6	2.9

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 50. Median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate, race/ethnicity, and sex: 2006 (Thousands of dollars)

	All full	ime em	ployed	American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
Field	Total	Male	Female																		
All fields	85.9	92.0	71.8	79.7	79.9	77.3	87.9	91.9	73.4	70.5	75.0	66.0	74.8	80.0	64.5	87.0	92.9	71.9	65.0	69.9	60.2
Science	82.0	89.0	70.0	77.6	78.0	73.2	80.0	84.7	69.8	67.7	71.4	64.3	72.9	79.7	63.8	84.0	89.9	70.0	65.0	71.6	58.1
Biological, agricultural, and environmental life sciences	80.0	84.9	68.8	81.2	78.3	89.6	71.6	79.2	61.5	64.3	72.4	58.0	69.6	74.6	59.9	84.0	88.5	70.0	51.3	S	S
Agricultural/food sciences	78.2	80.8	64.9	S	S	S	70.2	74.5	53.4	57.9	57.8	S	75.5	79.9	S	79.6	83.4	67.9	S	S	S
Biochemistry/biophysics	87.9	94.0	74.4	S	S	S	82.2	86.5	71.1	63.3	82.0	53.5	71.3	79.5	S	90.5	96.8	78.5	S	S	S
Cell/molecular biology	75.0	81.5	69.3	S	S	S	68.9	75.8	60.0	56.1	61.5	S	85.4	125.0	S	80.0	84.7	73.4	S	S	S
Environmental life sciences	78.7	84.1	63.6	S	S	S	61.2	54.7	70.7	S	S	S	S	S	S	79.6	84.7	61.0	S	S	S
Microbiology	84.3	92.8	67.5	S	S	S	71.5	78.0	59.3	90.2	S	S	63.1	S	S	89.4	94.9	76.9	S	S	S
Zoology	73.6	78.8	62.8	S	S	S	70.8	72.0	S	S	S	S	70.2	69.1	S	74.7	78.9	62.5	S	S	S
Other biological sciences	79.8	85.2	67.4	88.3	85.0	S	70.4	77.5	59.7	64.8	75.1	59.0	62.2	63.7	60.4	83.0	89.3	69.9	S	S	S
Computer and information sciences	99.4	99.8	85.4	S	S	S	99.2	99.5	87.4	81.1	S	S	79.1	77.1	S	99.8	102.4	84.5	S	S	S
Mathematics and statistics	81.8	84.8	70.3	S	S	S	78.1	77.0	79.9	69.1	76.0	S	71.6	72.5	S	85.0	89.6	69.2	S	S	S
Physical sciences	92.9	95.9	77.7	74.6	73.7	S	90.9	93.6	82.8	69.4	70.6	61.7	88.3	92.5	71.5	94.9	97.7	74.2	76.2	S	S
Astronomy/astrophysics	82.5	84.8	63.5	S	S	S	77.5	76.5	S	S	S	S	S	S	S	84.3	89.1	65.1	S	S	S
Chemistry, except biochemistry	94.0	96.9	80.0	89.4	72.9	S	91.2	93.6	84.5	66.5	73.7	60.3	92.1	98.0	72.2	94.9	98.3	78.7	S	S	S
Earth/atmospheric/ocean sciences	78.4	83.1	64.4	S	S	S	69.8	73.8	62.6	S	S	S	75.0	77.2	S	79.4	84.0	64.4	S	S	S
Physics	99.9	99.9	83.3	S	S	S	96.0	97.1	88.2	85.6	77.4	S	81.2	83.8	S	99.9	100.0	78.0	S	S	S
Psychology	75.0	84.0	68.7	70.4	80.2	63.2	63.7	69.6	62.9	67.9	72.9	65.5	69.5	88.8	63.1	77.5	84.8	69.4	S	S	S
Social sciences	75.8	79.8	68.0	70.5	70.2	71.3	72.5	75.5	67.6	67.9	67.3	68.9	70.0	78.6	60.2	77.9	82.7	68.4	S	S	S
Economics	97.1	99.0	89.9	S	S	S	85.2	81.5	85.1	79.3	74.5	S	89.9	91.2	S	99.7	104.0	90.7	S	S	S
Political sciences	71.9	74.0	69.6	S	S	S	65.5	65.6	60.1	68.9	65.0	72.8	74.6	86.5	S	73.8	74.8	70.2	S	S	S
Sociology	69.3	70.3	67.6	S	S	S	63.6	63.5	62.3	64.8	69.8	56.5	64.9	67.7	63.2	69.7	71.1	68.8	S	S	S
Other social sciences	67.2	71.9	61.9	65.0	66.0	S	64.8	66.6	52.1	66.0	60.6	67.5	61.8	63.3	60.0	68.5	74.5	62.0	S	S	S
Engineering	99.9	100.0	88.9	115.7	116.9	S	99.5	99.8	86.6	90.0	90.1	89.4	84.4	84.7	78.7	103.0	105.0	89.7	S	S	S
Aerospace/aeronautical/ astronautical engineering	106.6	108.5	79.9	S	S	S	92.9	95.2	S	S	S	S	S	S	S	110.3	112.3	S	S	S	S
Chemical engineering	102.5	105.8	88.8	S	S	S	99.0	99.4	87.9	90.9	91.0	S	76.5	78.2	S	109.0	109.9	89.2	S	S	S
Civil engineering	89.9	90.3	76.6	S	S	S	90.0	91.3	65.0	71.4	73.0	S	79.6	82.5	S	90.3	91.3	84.6	S	S	S
Electrical/computer engineering	109.8	109.9	96.2	S	S	S	104.3	105.8	98.2	94.2	99.2	S	92.1	93.8	S	112.0	115.0	93.9	S	S	S
Materials/metallurgical engineering	99.7	99.8	91.6	S	S	S	99.5	99.6	90.5	81.2	S	S	S	S	S	99.8	100.0	91.4	S	S	S
Mechanical engineering	97.9	99.1	80.7	S	S	S	91.8	93.0	72.4	S	S	S	77.6	75.7	S	99.8	101.0	83.0	S	S	S
Other engineering	94.7	96.2	87.7	S	S	S	89.8	90.2	72.7	88.7	90.1	S	84.4	84.2	S	97.6	99.8	89.4	S	S	S
Health	80.0	92.1	74.5	S	S	S	85.6	97.2	75.0	72.0	70.8	72.0	73.3	73.5	71.8	80.0	92.7	73.8	S	S	S

$S=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 51. Median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and citizenship status: 2006 (Dollars)

Field	All full time employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
All fields	85,900	89,000	85,800	97,700	72,000	79,700	54,400
Science	82,000	84,800	83,000	89,900	63,900	73,900	49,900
Biological, agricultural, and environmental life sciences	80,000	83,000	83,000	84,300	49,700	58,700	41,500
Agricultural/food sciences	78,200	79,600	79,900	77,000	58,700	69,200	43,300
Biochemistry/biophysics	87,900	91,200	89,900	94,700	49,100	67,200	39,400
Cell/molecular biology	75,000	80,000	80,000	76,500	52,800	58,400	44,100
Environmental life sciences	78,700	79,400	79,400	76,000	52,100	S	45,800
Microbiology	84,300	89,500	89,100	91,700	42,700	42,000	50,600
Zoology	73,600	75,700	74,500	83,300	S	S	S
Other biological sciences	79,800	83,000	82,000	84,300	46,400	54,600	40,100
Computer and information sciences	99,400	102,900	99,400	108,900	86,800	89,800	76,800
Mathematics and statistics	81,800	86,500	86,500	86,000	64,900	73,400	50,000
Physical sciences	92,900	95,900	95,000	99,900	67,400	79,800	49,500
Astronomy/astrophysics	82,500	83,000	82,200	93,300	68,700	S	S
Chemistry, except biochemistry	94,000	96,200	95,000	99,900	72,300	81,100	45,000
Earth/atmospheric/ocean sciences	78,400	80,000	80,000	78,400	54,800	59,900	47,800
Physics	99,900	100,000	100,000	104,400	71,400	80,500	49,900
Psychology	75,000	75,800	75,800	74,600	58,800	65,700	52,900
Social sciences	75,800	76,400	75,900	80,000	70,000	73,500	62,800
Economics	97,100	99,400	99,900	92,100	84,900	88,000	79,500
Political sciences	71,900	72,700	73,100	70,600	60,700	65,200	S
Sociology	69,300	69,600	69,600	68,100	58,700	61,400	S
Other social sciences	67,200	68,500	67,500	72,100	56,900	59,500	52,400
Engineering	99,900	104,800	103,800	106,000	83,600	94,200	69,900
Aerospace/aeronautical/astronautical engineering	106,600	109,500	109,500	108,300	67,700	93,600	55,700
Chemical engineering	102,500	108,800	107,600	108,700	84,200	90,200	58,800
Civil engineering	89,900	93,900	89,900	99,700	75,200	85,300	59,000
Electrical/computer engineering	109,800	116,900	113,900	118,200	95,700	100,000	84,300
Materials/metallurgical engineering	99,700	101,900	102,000	100,600	82,700	93,200	69,000
Mechanical engineering	97,900	99,800	99,400	100,400	75,700	89,400	66,900
Other engineering	94,700	98,600	99,800	96,500	78,400	89,200	59,600
Health	80,000	80,000	80,000	89,600	69,600	81,300	49,600

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTE: Median annual salaries are for principal job and are rounded to nearest 100 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 52. Median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and age: 2006
(Dollars)

| Field | All full time
 employed | Under 35 | $35-39$ | $40-44$ | $45-49$ | $50-54$ | $55-59$ | $60-64$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 65-75

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTE: Median annual salaries are for principal job and are rounded to nearest 100 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 53. Median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and years since doctorate: 2006 (Dollars)

Field	All full time employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
All fields	85,900	55,300	80,000	88,900	94,700	100,000	105,900
Science	82,000	52,000	72,500	82,700	89,900	99,600	103,000
Biological, agricultural, and environmental life sciences	80,000	44,900	69,400	82,000	91,600	102,800	106,300
Agricultural/food sciences	78,200	55,300	65,600	76,700	84,900	102,100	91,400
Biochemistry/biophysics	87,900	42,000	71,400	87,300	96,700	108,800	117,000
Cell/molecular biology	75,000	43,700	69,400	82,400	110,500	117,600	122,800
Environmental life sciences	78,700	56,300	70,900	85,800	76,500	99,900	99,200
Microbiology	84,300	42,600	66,700	93,300	95,700	88,600	116,400
Zoology	73,600	41,700	62,600	61,700	69,300	86,900	94,000
Other biological sciences	79,800	44,900	69,600	79,800	94,500	103,100	109,900
Computer and information sciences	99,400	79,500	99,700	108,700	116,500	106,600	105,000
Mathematics and statistics	81,800	54,000	68,100	79,300	80,000	94,600	101,600
Physical sciences	92,900	55,700	83,400	94,200	99,500	105,100	112,000
Astronomy/astrophysics	82,500	49,000	69,000	94,200	91,000	93,900	108,000
Chemistry, except biochemistry	94,000	59,600	88,900	94,900	101,000	110,000	106,000
Earth/atmospheric/ocean sciences	78,400	50,900	64,400	77,300	78,900	98,100	111,900
Physics	99,900	60,000	84,900	99,300	99,900	104,700	119,400
Psychology	75,000	53,000	66,200	74,600	81,900	89,500	94,600
Social sciences	75,800	54,900	66,000	74,300	78,800	89,700	94,700
Economics	97,100	75,200	92,700	96,200	85,000	104,900	114,800
Political sciences	71,900	54,900	64,700	74,100	73,400	83,700	89,800
Sociology	69,300	51,700	62,600	63,200	69,700	82,500	89,900
Other social sciences	67,200	50,900	60,000	68,800	79,000	84,000	82,700
Engineering	99,900	75,500	99,800	102,200	115,000	119,800	119,800
Aerospace/aeronautical/astronautical engineering	106,600	73,900	106,500	99,600	114,800	125,900	118,500
Chemical engineering	102,500	78,700	98,700	103,300	116,500	118,700	125,800
Civil engineering	89,900	64,400	80,100	95,700	109,000	100,300	109,500
Electrical/computer engineering	109,800	85,200	109,400	119,500	122,700	127,200	127,400
Materials/metallurgical engineering	99,700	69,800	98,100	99,400	114,300	118,000	124,100
Mechanical engineering	97,900	72,100	91,200	99,100	110,400	114,900	120,300
Other engineering	94,700	69,900	90,300	94,800	102,300	127,100	115,100
Health	80,000	64,000	75,000	81,700	92,900	100,000	101,500

NOTE: Median annual salaries are for principal job and are rounded to nearest 100.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 54. Median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and sector of employment: 2006 (Dollars)

Field	All full time employed	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text { }}$	Private non-profit	Federal government	State, local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
All fields	85,900	70,900	60,000	105,700	89,000	99,700	74,600	89,400	118,600
Science	82,000	69,900	60,000	104,900	82,800	98,000	72,900	84,900	119,100
Biological, agricultural, and environmental									
life sciences	80,000	68,800	54,000	103,900	79,100	91,700	64,600	73,900	S
Agricultural/food sciences	78,200	69,800	52,500	90,100	78,600	89,900	68,800	66,200	S
Biochemistry/biophysics	87,900	71,400	54,300	110,000	98,400	99,400	91,900	75,500	S
Cell/molecular biology	75,000	62,200	54,100	102,700	66,400	89,900	S	S	S
Environmental life sciences	78,700	64,700	S	98,900	76,800	87,200	60,700	S	S
Microbiology	84,300	67,500	51,200	112,300	72,900	87,000	68,800	S	S
Zoology	73,600	69,000	55,100	98,100	60,600	92,500	58,400	60,800	S
Other biological sciences	79,800	68,600	55,300	105,700	76,700	94,400	63,300	64,700	S
Computer and information sciences	99,400	79,900	S	124,100	108,900	110,100	90,500	S	S
Mathematics and statistics	81,800	70,800	50,000	109,100	94,400	100,700	74,400	52,200	S
Physical sciences	92,900	68,200	53,300	105,500	99,900	106,200	80,400	78,200	S
Astronomy/astrophysics	82,500	64,800	S	106,300	113,900	103,100	S	S	S
Chemistry, except biochemistry	94,000	64,600	54,000	104,900	94,900	96,900	74,100	74,200	S
Earth/atmospheric/ocean sciences	78,400	66,100	49,400	99,900	79,300	107,200	62,800	71,100	S
Physics	99,900	74,700	52,400	109,200	104,600	117,200	113,500	88,900	S
Psychology	75,000	65,600	69,000	96,600	73,400	94,100	73,100	89,100	S
Social sciences	75,800	70,000	60,000	99,900	79,500	99,800	68,900	71,900	144,600
Economics	97,100	89,300	57,100	141,800	98,700	106,100	92,500	74,500	149,400
Political sciences	71,900	66,300	55,200	97,100	80,500	105,400	71,100	96,200	S
Sociology	69,300	67,700	66,400	87,400	84,300	111,400	63,800	42,100	S
Other social sciences	67,200	63,200	61,500	89,800	59,200	88,100	66,700	58,100	S
Engineering	99,900	82,900	50,800	106,900	120,000	105,800	88,800	99,300	S
Aerospace/aeronautical/astronautical engineering	106,600	90,800	S	109,100	S	116,300	S	S	S
Chemical engineering	102,500	77,200	S	107,600	139,700	102,800	81,900	115,200	S
Civil engineering	89,900	82,000	S	98,400	S	88,400	80,800	94,100	S
Electrical/computer engineering	109,800	86,000	53,600	117,300	128,400	105,500	91,000	140,200	S
Materials/metallurgical engineering	99,700	74,500	S	102,800	97,400	99,400	82,700	S	S
Mechanical engineering	97,900	79,700	S	99,500	94,700	113,300	S	90,400	S
Other engineering	94,700	81,000	S	99,900	117,900	102,800	88,700	92,200	S
Health	80,000	71,100	65,100	108,700	99,000	94,300	65,200	115,000	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-
${ }^{\mathrm{b}}$ Other educational institution includes 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{\text {d }}$ Self-employed or business owner in a non-incorporated business.
${ }^{e}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job and are rounded to nearest 100 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 55. Median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 2006
(Dollars)

Employment sector and field	All full time employed	Male	Female
All sectors	85,900	92,000	71,800
Science	82,000	89,000	70,000
Biological, agricultural, and environmental life sciences	80,000	84,900	68,800
Computer and information sciences	99,400	99,800	85,400
Mathematics and statistics	81,800	84,800	70,300
Physical sciences	92,900	95,900	77,700
Psychology	75,000	84,000	68,700
Social sciences	75,800	79,800	68,000
Engineering	99,900	100,000	88,900
Health	80,000	92,100	74,500
4-year educational institutions ${ }^{\text {a }}$	70,900	75,000	62,900
Science	69,900	74,900	60,900
Biological, agricultural, and environmental life sciences	68,800	74,300	58,000
Computer and information sciences	79,900	80,800	78,700
Mathematics and statistics	70,800	74,800	63,000
Physical sciences	68,200	71,000	57,600
Psychology	65,600	72,000	62,400
Social sciences	70,000	75,000	63,900
Engineering	82,900	84,800	71,800
Health	71,100	78,900	69,400
Other educational institutions ${ }^{\text {b }}$	60,000	59,700	58,000
Science	60,000	61,100	58,000
Biological, agricultural, and environmental life sciences	54,000	56,400	50,000
Computer and information sciences	S	S	S
Mathematics and statistics	50,000	49,900	S
Physical sciences	53,300	54,000	51,600
Psychology	69,000	74,800	61,700
Social sciences	60,000	64,800	57,500
Engineering	50,800	52,300	S
Health	65,100	S	66,600
Private-for-profit ${ }^{\text {c }}$	105,700	110,000	96,900
Science	104,900	110,000	96,700
Biological, agricultural, and environmental life sciences	103,900	109,900	94,700
Computer and information sciences	124,100	124,900	109,800
Mathematics and statistics	109,100	107,300	118,100
Physical sciences	105,500	107,000	98,000
Psychology	96,600	99,800	79,900
Social sciences	99,900	101,200	97,100
Engineering	106,900	109,000	99,200
Health	108,700	120,800	88,200
Private nonprofit	89,000	99,600	71,600
Science	82,800	93,200	69,300
Biological, agricultural, and environmental life sciences	79,100	85,000	64,100
Computer and information sciences	108,900	114,900	S
Mathematics and statistics	94,400	94,700	79,200
Physical sciences	99,900	102,200	87,700
Psychology	73,400	81,000	64,500
Social sciences	79,500	87,000	77,900
Engineering	120,000	124,900	99,100
Health	99,000	108,600	92,800
Federal government	99,700	100,600	90,000
Science	98,000	99,700	90,000
Biological, agricultural, and environmental life sciences	91,700	93,800	82,900

TABLE 55. Median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 2006
(Dollars)

Employment sector and field	All full time employed	Male	Female
Computer and information sciences	110,100	107,700	S
Mathematics and statistics	100,700	101,500	S
Physical sciences	106,200	110,100	80,100
Psychology	94,100	94,700	92,600
Social sciences	99,800	101,500	98,900
Engineering	105,800	109,400	89,900
Health	94,300	96,900	89,800
State and local government	74,600	77,600	69,300
Science	72,900	75,700	66,400
Biological, agricultural, and environmental life sciences	64,600	70,000	60,700
Computer and information sciences	90,500	89,400	S
Mathematics and statistics	74,400	74,400	S
Physical sciences	80,400	86,700	65,300
Psychology	73,100	76,100	70,000
Social sciences	68,900	69,400	64,500
Engineering	88,800	89,900	83,500
Health	65,200	63,800	70,100
Self-employed ${ }^{\text {u }}$	89,400	98,100	79,300
Science	84,900	88,900	79,200
Biological, agricultural, and environmental life sciences	73,900	75,000	53,300
Computer and information sciences	S	S	S
Mathematics and statistics	52,200	58,100	S
Physical sciences	78,200	79,100	58,500
Psychology	89,100	97,000	79,800
Social sciences	71,900	75,400	40,500
Engineering	99,300	99,400	S
Health	115,000	116,500	S
Other ${ }^{\text {e }}$	118,600	140,300	98,000
Science	119,100	141,300	100,600
Biological, agricultural, and environmental life sciences	S	S	S
Computer and information sciences	S	S	S
Mathematics and statistics	S	S	S
Physical sciences	S	S	S
Psychology	S	S	S
Social sciences	144,600	148,600	S
Engineering	S	S	S
Health	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\text {b }}$ Other educational institution includes 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{\text {d }}$ Self-employed or business owner in a non-incorporated business.
${ }^{e}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job and are rounded to nearest 100.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 56. Median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006
(Dollars)

Employment sector and field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
All sectors	85,900	79,700	87,900	70,500	74,800	87,000	65,000
Science	82,000	77,600	80,000	67,700	72,900	84,000	65,000
Biological, agricultural, and environmental life sciences	80,000	81,200	71,600	64,300	69,600	84,000	51,300
Computer and information sciences	99,400	S	99,200	81,100	79,100	99,800	S
Mathematics and statistics	81,800	S	78,100	69,100	71,600	85,000	S
Physical sciences	92,900	74,600	90,900	69,400	88,300	94,900	76,200
Psychology	75,000	70,400	63,700	67,900	69,500	77,500	S
Social sciences	75,800	70,500	72,500	67,900	70,000	77,900	S
Engineering	99,900	115,700	99,500	90,000	84,400	103,000	S
Health	80,000	S	85,600	72,000	73,300	80,000	S
4-year educational institutions ${ }^{\text {b }}$	70,900	72,100	64,400	64,700	65,800	72,900	61,800
Science	69,900	69,000	60,000	62,900	64,700	71,000	63,400
Biological, agricultural, and environmental life sciences	68,800	76,000	52,600	58,600	60,400	71,900	S
Computer and information sciences	79,900	S	80,000	S	S	79,900	S
Mathematics and statistics	70,800	S	64,200	63,200	67,600	73,900	S
Physical sciences	68,200	S	59,400	52,100	69,000	69,900	S
Psychology	65,600	62,900	54,800	63,100	58,800	67,100	S
Social sciences	70,000	60,700	64,800	66,700	68,200	71,800	S
Engineering	82,900	S	74,200	78,000	72,800	87,500	S
Health	71,100	S	65,800	72,000	68,600	71,300	S
Other educational institutions ${ }^{\text {c }}$	60,000	S	58,800	58,900	61,000	58,600	S
Science	60,000	S	59,600	58,800	61,100	59,800	S
Biological, agricultural, and environmental life sciences	54,000	S	50,600	S	S	54,000	S
Computer and information sciences	S	S	S	S	S	S	S
Mathematics and statistics	50,000	S	S	S	S	54,800	S
Physical sciences	53,300	S	S	S	S	52,700	S
Psychology	69,000	S	S	58,500	73,000	69,300	S
Social sciences	60,000	S	S	S	S	58,300	S
Engineering	50,800	S	51,700	S	S	42,500	S
Health	65,100	S	S	S	S	57,400	S
Private for-profit ${ }^{\text {d }}$	105,700	105,600	99,900	94,800	99,400	110,000	93,700
Science	104,900	103,900	99,800	90,800	98,900	110,000	94,100
Biological, agricultural, and environmental life sciences	103,900	S	93,500	92,200	95,600	109,600	S
Computer and information sciences	124,100	S	118,100	S	S	128,400	S
Mathematics and statistics	109,100	S	99,500	S	S	119,600	S
Physical sciences	105,500	92,800	99,600	89,700	99,800	108,300	S
Psychology	96,600	S	88,700	84,700	104,100	97,300	S
Social sciences	99,900	S	96,200	S	114,700	99,900	S
Engineering	106,900	115,600	100,000	104,900	99,400	113,400	S
Health	108,700	S	108,800	S	S	108,900	S
Private not-for-profit	89,000	S	78,500	73,300	63,500	93,000	S
Science	82,800	S	69,700	69,600	62,900	88,400	S
Biological, agricultural, and environmental life sciences	79,100	S	60,800	S	43,000	84,100	S
Computer and information sciences	108,900	S	S	S	S	105,200	S
Mathematics and statistics	94,400	S	S	S	S	94,000	S
Physical sciences	99,900	S	78,500	S	S	104,300	S
Psychology	73,400	S	60,600	60,500	69,000	74,900	S
Social sciences	79,500	S	64,400	74,900	S	84,100	S
Engineering	120,000	S	101,600	S	S	130,000	S
Health	99,000	S	100,200	S	S	99,400	S
Federal government	99,700	81,500	94,600	90,800	87,100	99,800	S
Science	98,000	82,000	89,200	88,800	87,400	99,600	S

TABLE 56. Median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006
(Dollars)

Employment sector and field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{\text {a }}$
Biological, agricultural, and environmental life sciences	91,700	S	84,300	69,700	74,800	94,100	S
Computer and information sciences	110,100	S	S	S	S	113,100	S
Mathematics and statistics	100,700	S	79,600	S	S	107,400	S
Physical sciences	106,200	S	98,900	S	102,100	109,100	S
Psychology	94,100	S	S	S	S	94,000	S
Social sciences	99,800	S	97,800	S	S	101,500	S
Engineering	105,800	S	100,700	S	S	107,900	S
Health	94,300	S	80,500	S	S	94,800	S
State and local government	74,600	51,400	74,500	70,100	66,700	75,000	S
Science	72,900	S	69,800	70,900	75,300	74,000	S
Biological, agricultural, and environmental life sciences	64,600	S	45,400	S	S	69,900	S
Computer and information sciences	90,500	S	S	S	S	S	S
Mathematics and statistics	74,400	S	S	S	S	S	S
Physical sciences	80,400	S	79,400	S	S	80,200	S
Psychology	73,100	S	68,600	75,600	S	74,100	S
Social sciences	68,900	S	48,100	S	S	68,900	S
Engineering	88,800	S	84,100	S	S	91,000	S
Health	65,200	S	S	S	S	70,600	S
Self-employed ${ }^{\text {e }}$	89,400	S	81,200	96,000	88,400	87,600	S
Science	84,900	S	71,900	93,100	89,500	85,600	S
Biological, agricultural, and environmental life sciences	73,900	S	S	S	S	70,400	S
Computer and information sciences	S	S	S	S	S	S	S
Mathematics and statistics	52,200	S	S	S	S	27,200	S
Physical sciences	78,200	S	72,500	S	S	77,200	S
Psychology	89,100	S	S	S	87,600	89,400	S
Social sciences	71,900	S	S	S	S	70,400	S
Engineering	99,300	S	96,100	S	S	103,200	S
Health	115,000	S	S	S	S	107,900	S
Other ${ }^{\text {f }}$	118,600	S	35,300	S	S	143,400	S
Science	119,100	S	50,700	S	S	143,500	S
Biological, agricultural, and environmental life sciences	S	S	S	S	S	S	S
Computer and information sciences	S	S	S	S	S	S	S
Mathematics and statistics	S	S	S	S	S	S	S
Physical sciences	S	S	S	S	S	S	S
Psychology	S	S	S	S	S	S	S
Social sciences	144,600	S	S	S	S	149,200	S
Engineering	S	S	S	S	S	S	S
Health	S	S	S	S	S	S	S

S = suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{c}$ Other educational institution includes 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {d }}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job and are rounded to nearest 100.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 57. Median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and primary or secondary work activity: 2006 (Dollars)

Field	All full time employed	Computer applications	Management, sales, administration	Professional services	R\&D ${ }^{\text {a }}$	Teaching	Other
All fields	85,900	94,700	106,900	86,000	90,000	63,500	75,800
Science	82,000	92,000	102,900	84,700	86,900	61,800	71,800
Biological, agricultural, and environmental life sciences	80,000	79,700	102,400	99,300	79,900	59,800	69,300
Agricultural/food sciences	78,200	78,300	92,200	83,700	79,100	59,200	71,000
Biochemistry/biophysics	87,900	77,900	114,600	99,200	84,900	62,200	69,400
Cell/molecular biology	75,000	S	113,400	102,300	69,900	52,700	68,800
Environmental life sciences	78,700	S	89,800	76,600	80,000	55,900	77,700
Microbiology	84,300	S	106,500	105,100	84,800	54,800	55,000
Zoology	73,600	S	93,000	72,900	80,700	59,500	58,700
Other biological sciences	79,800	70,200	99,100	102,900	77,200	59,500	68,400
Computer and information sciences	99,400	109,400	130,200	98,700	105,000	74,900	80,800
Mathematics and statistics	81,800	99,100	113,900	89,400	94,600	64,500	70,700
Physical sciences	92,900	90,200	112,400	99,900	96,900	59,900	84,200
Astronomy/astrophysics	82,500	96,100	90,200	S	88,200	63,500	65,400
Chemistry, except biochemistry	94,000	87,800	108,800	110,000	96,900	57,800	80,100
Earth/atmospheric/ocean sciences	78,400	79,200	101,000	78,300	84,000	59,900	78,100
Physics	99,900	93,300	124,500	119,200	99,600	64,600	94,600
Psychology	75,000	83,000	87,700	78,800	79,600	60,900	68,600
Social sciences	75,800	84,500	98,500	79,500	84,600	61,900	69,100
Economics	97,100	96,500	129,600	119,000	104,300	75,300	94,400
Political sciences	71,900	87,300	98,800	80,800	74,700	59,400	62,700
Sociology	69,300	S	93,400	59,100	79,000	59,900	56,700
Other social sciences	67,200	80,200	83,100	69,700	72,100	57,700	62,800
Engineering	99,900	99,300	119,900	105,000	99,800	76,300	90,700
Aerospace/aeronautical/astronautical engineering	106,600	88,300	126,200	S	99,800	90,300	119,300
Chemical engineering	102,500	105,800	119,400	104,900	99,200	64,700	92,400
Civil engineering	89,900	77,500	109,900	91,700	84,900	80,000	89,900
Electrical/computer engineering	109,800	99,800	132,300	131,600	109,800	83,300	95,900
Materials/metallurgical engineering	99,700	96,700	119,200	127,300	97,000	66,300	90,000
Mechanical engineering	97,900	86,500	118,700	118,700	95,300	75,100	92,500
Other engineering	94,700	89,700	117,600	96,900	94,600	74,700	82,400
Health	80,000	S	95,900	84,200	83,900	64,700	58,600

S = suppressed for reliability or confidentiality.
${ }^{\text {a }}$ R\&D includes applied or basic research, design, and development.
NOTES: Median annual salaries are for principal job and are rounded to nearest 100 . If respondent reported more than one category of activity as the primary or secondary work activity, respondent's salary appears in both categories.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 58. Median annual salaries of full time employed doctoral scientists and engineers, by employer location and broad field of doctorate: 2006 (Dollars)

Employer location		Science							Engineering	Health
	All fields	All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
All locations	85,900	82,000	80,000	99,400	81,800	92,900	75,000	75,800	99,900	80,000
New England	89,000	84,600	81,000	105,200	92,800	99,100	78,000	79,200	99,500	84,800
Connecticut	92,500	93,300	92,900	S	S	103,000	82,800	91,500	95,200	80,900
Maine	68,800	66,900	67,000	S	S	71,100	59,000	67,100	98,900	S
Massachusetts	89,700	87,000	80,300	107,100	93,000	99,700	79,400	79,400	99,600	91,200
New Hampshire	75,800	66,100	60,800	S	S	66,600	59,800	76,300	102,700	S
Rhode Island	85,500	78,600	84,000	S	S	77,600	74,600	79,500	97,000	S
Vermont	73,900	72,000	73,000	S	S	S	65,300	63,500	96,300	S
Middle Atlantic	89,900	88,800	86,900	98,200	92,700	94,700	81,700	79,300	99,800	84,200
New Jersey	99,900	99,900	103,800	109,400	98,900	99,900	91,400	84,500	99,900	97,800
New York	89,900	88,900	82,200	99,300	94,200	94,900	84,200	84,900	99,700	87,500
Pennsylvania	82,700	79,600	82,700	66,800	80,200	83,900	75,100	72,400	99,200	73,200
East North Central	80,000	77,700	79,200	78,200	75,000	84,700	69,800	71,800	93,800	75,100
Illinois	84,600	82,900	84,900	84,700	85,100	88,100	73,300	77,800	96,700	76,000
Indiana	79,300	79,200	90,200	S	62,900	80,000	65,000	72,100	83,300	59,800
Michigan	84,800	75,700	76,000	S	78,100	92,300	69,100	73,000	95,700	88,600
Ohio	80,000	74,900	78,400	72,400	82,000	82,900	69,700	66,900	91,600	74,800
Wisconsin	67,000	64,900	60,100	S	55,400	79,900	64,600	69,000	75,300	61,700
West North Central	73,700	70,800	74,500	89,500	69,900	74,500	64,800	62,000	87,600	71,000
lowa	70,300	70,600	74,000	S	68,700	71,000	57,100	61,900	68,300	63,300
Kansas	68,600	69,300	70,700	S	S	64,600	78,500	51,400	75,000	53,300
Minnesota	80,000	76,000	78,200	S	91,800	89,800	67,200	61,900	99,700	76,400
Missouri	71,400	69,000	67,700	S	70,000	79,700	62,600	68,600	89,500	71,200
Nebraska	69,200	66,600	70,800	S	S	S	S	S	S	S
North Dakota	69,900	69,100	79,500	S	S	54,300	70,500	66,200	79,100	S
South Dakota	61,100	59,900	59,000	S	S	S	57,900	S	S	S
South Atlantic	88,000	84,500	84,700	94,300	88,400	94,900	74,800	80,000	99,700	88,000
Delaware	98,500	94,900	102,000	S	S	100,500	79,500	S	109,800	S
District of Columbia	104,100	102,800	98,400	S	85,100	114,100	81,300	109,400	111,000	91,200
Florida	76,100	71,600	76,500	90,800	64,100	71,900	69,500	60,000	83,400	73,600
Georgia	74,300	69,600	69,400	S	59,900	71,100	71,400	64,000	89,700	89,800
Maryland	93,500	92,600	90,900	107,700	93,900	100,000	73,300	80,800	100,600	88,800
North Carolina	81,100	80,000	84,300	79,600	75,100	89,300	73,400	64,900	99,200	84,700
South Carolina	73,500	71,700	74,100	S	78,000	73,300	65,300	60,400	89,400	77,200
Virginia	95,000	92,000	87,200	121,500	109,300	99,000	80,900	74,500	104,200	74,300
West Virginia	79,100	78,200	81,200	S	S	86,800	S	68,200	70,600	S
East South Central	75,200	73,500	69,800	86,400	79,100	76,700	74,900	67,500	90,600	70,700
Alabama	77,200	71,500	68,800	S	89,700	73,600	65,600	65,700	88,700	75,800
Kentucky	74,300	69,900	62,500	S	79,300	69,200	83,800	59,600	96,600	65,200
Mississippi	71,000	67,100	67,600	S	S	71,200	49,900	52,800	81,200	S
Tennessee	78,400	75,500	78,600	S	S	78,500	79,700	69,900	92,300	71,700
West South Central	82,900	77,400	74,100	89,100	70,600	91,200	71,600	74,500	99,900	74,100
Arkansas	72,000	73,300	67,400	S	S	96,300	74,700	59,000	79,400	S
Louisiana	70,000	69,200	64,900	S	64,200	74,200	60,400	80,900	86,600	62,400
Oklahoma	70,500	66,300	68,100	S	S	64,000	57,400	61,100	79,400	S
Texas	86,800	79,900	77,100	93,200	73,000	92,900	74,800	77,200	102,700	73,900
Mountain	80,000	75,500	74,400	94,700	72,000	91,100	65,000	67,700	99,900	71,800
Arizona	79,700	71,700	72,100	S	S	68,700	75,800	65,300	99,400	73,100
Colorado	82,900	80,900	80,300	100,700	66,900	91,600	72,200	77,100	90,700	70,500

TABLE 58. Median annual salaries of full time employed doctoral scientists and engineers, by employer location and broad field of doctorate: 2006 (Dollars)

Employer location	All fields	Science							Engineering	Health
		All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Idaho	70,500	64,600	65,800	S	S	78,100	53,200	S	100,100	S
Montana	58,000	58,000	56,000	S	S	59,200	62,700	S	64,700	S
New Mexico	97,700	91,100	66,500	S	102,500	102,900	63,200	61,700	107,200	S
Nevada	84,000	84,000	87,700	S	82,800	92,900	52,900	55,700	79,900	S
Utah	74,300	71,300	69,400	S	64,700	75,400	64,900	68,700	91,400	64,800
Wyoming	65,000	62,000	65,900	S	S	S	S	S	S	S
Pacific	95,000	89,900	82,000	119,600	87,400	99,400	80,000	79,400	109,900	80,000
Alaska	69,900	68,600	60,900	S	S	62,200	S	S	S	S
California	100,000	95,000	86,700	120,000	89,000	104,300	86,700	88,500	117,400	82,800
Hawaii	79,700	79,600	81,700	S	S	86,000	86,900	69,500	S	S
Oregon	83,000	74,800	75,400	107,100	68,300	87,000	62,200	63,300	97,700	60,500
Washington	80,000	74,900	69,000	120,100	96,000	84,300	73,300	73,000	99,900	85,500
Puerto Rico	62,800	60,100	59,900	S	S	58,400	60,800	S	S	S
Other U.S. territories and other areas	86,200	83,500	84,200	S	S	96,900	S	S	85,100	S

NOTES: Because survey sample design does not include geography, reliability of estimates in some states may be poor due to small sample size. Median annual salaries are for principal job and are rounded to nearest 100.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 59. Median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, and faculty rank: 2006
(Dollars)

Field and sex	All full time employed	Full professor	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
All fields	70,900	98,900	71,600	60,000	50,600	64,500	46,500
Male	75,000	99,900	73,000	62,600	51,700	66,800	47,700
Female	62,900	91,700	68,900	57,000	49,400	S	44,700
Science	69,900	95,300	70,000	57,700	50,000	58,100	46,400
Male	74,900	97,000	71,500	59,900	51,400	62,800	47,800
Female	60,900	91,900	67,900	54,900	49,100	S	44,600
Biological, agricultural, and environmental life sciences	68,800	102,200	75,200	62,900	50,100	S	42,800
Male	74,300	103,000	75,800	64,900	50,600	S	43,600
Female	58,000	99,600	74,600	59,600	49,100	S	41,800
Computer and information sciences	79,900	99,100	80,500	74,200	S	S	80,200
Male	80,800	99,400	80,900	74,200	S	S	79,300
Female	78,700	88,400	78,800	72,800	S	S	S
Mathematics and statistics	70,800	94,700	63,900	57,000	51,800	S	48,700
Male	74,800	94,700	63,000	57,800	51,700	S	48,700
Female	63,000	94,400	64,300	53,000	S	S	47,500
Physical sciences	68,200	94,300	65,000	55,000	49,100	S	49,800
Male	71,000	95,200	66,800	55,500	49,000	S	51,500
Female	57,600	84,100	62,700	53,800	44,900	S	47,300
Psychology	65,600	90,000	67,700	54,700	49,200	S	54,300
Male	72,000	90,000	70,900	55,000	61,700	S	59,200
Female	62,400	89,500	65,200	53,500	46,400	S	50,700
Social sciences	70,000	91,400	66,900	53,900	45,300	S	61,500
Male	75,000	92,800	69,100	55,000	48,600	S	61,600
Female	63,900	87,100	64,900	52,800	41,300	S	60,500
Engineering	82,900	109,300	81,900	74,000	61,900	S	43,000
Male	84,800	109,500	82,600	74,300	61,300	S	45,800
Female	71,800	105,700	81,300	69,600	S	S	40,500
Health	71,100	94,900	71,600	64,800	50,700	S	50,300
Male	78,900	104,400	74,600	67,400	S	S	44,800
Female	69,400	89,200	69,400	64,400	51,900	S	54,700

S = suppressed for reliability or confidentiality.
NOTES: Median annual salaries are for principal job and are rounded to nearest 100. 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 60. Median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, faculty rank, and years since doctorate: 2006 (Dollars)

Field and sex	All full time employed		Full professor		Associate professor		Assistant professor		Instructor/ lecturer		All other faculty		Rank not applicable	
	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$
All fields	52,500	84,900	69,700	99,900	64,800	72,900	58,500	64,900	46,500	57,700	61,400	68,300	41,900	70,300
Male	53,900	88,800	70,800	100,000	66,500	74,900	60,000	67,700	48,700	61,800	S	69,200	41,900	74,300
Female	51,000	74,900	66,700	92,700	63,300	70,600	55,000	64,200	44,800	52,700	S	S	41,800	63,500
Science	50,400	82,600	73,200	95,800	62,900	71,800	55,600	64,600	44,900	57,900	S	S	41,900	69,700
Male	51,900	85,300	74,000	97,900	64,500	72,800	57,700	64,900	47,200	62,100	S	S	42,000	73,900
Female	49,900	74,700	69,100	92,500	61,800	70,000	53,300	63,300	43,600	52,900	S	S	41,800	61,900
Biological, agricultural, and environmental life sciences	45,700	84,800	S	102,800	63,700	78,900	59,700	67,700	45,700	55,100	S	S	40,800	59,600
Male	47,800	88,500	S	103,700	64,800	79,100	63,000	69,300	45,300	57,500	S	S	41,800	62,100
Female	44,300	75,300	S	99,800	53,200	76,100	55,000	64,600	45,600	52,400	S	S	40,000	54,200
Computer and information sciences	76,100	88,200	S	99,500	80,800	80,300	74,300	S	S	S	S	S	82,900	S
Male	76,200	89,000	S	99,800	82,100	79,000	74,200	S	S	S	S	S	86,900	S
Female	75,000	86,600	S	89,300	S	S	72,900	S	S	S	S	S	S	S
Mathematics and statistics	53,300	82,400	S	94,800	60,100	64,800	55,700	64,400	S	58,400	S	S	46,900	58,500
Male	53,000	84,700	S	94,800	60,300	64,500	57,300	75,500	S	S	S	S	46,400	63,400
Female	53,900	69,400	S	94,400	57,100	66,700	52,800	S	S	S	S	S	50,200	S
Physical sciences	50,000	82,000	S	94,600	56,700	67,200	54,000	57,300	45,900	55,600	S	S	43,600	79,800
Male	50,000	84,700	S	95,800	55,800	69,700	55,000	57,800	47,700	54,000	S	S	43,300	82,400
Female	49,800	68,700	S	86,100	56,400	63,200	52,700	55,400	S	S	S	S	44,400	59,900
Psychology	52,000	79,900	S	90,200	62,100	69,600	52,800	63,100	44,100	59,400	S	S	44,800	69,200
Male	52,700	85,000	S	90,800	53,700	75,000	54,000	59,400	S	S	S	S	45,100	71,600
Female	51,800	74,300	S	89,700	63,000	66,000	52,400	64,600	42,800	50,200	S	S	44,700	68,200
Social sciences	54,700	79,800	101,000	91,300	62,400	69,500	53,500	59,700	39,700	62,700	S	S	48,800	79,200
Male	56,100	84,800	94,200	92,800	64,300	70,500	54,700	63,100	39,700	92,600	S	S	48,700	79,600
Female	53,300	74,900	S	86,600	61,400	67,900	51,900	58,400	39,500	43,500	S	S	46,800	72,400
Engineering	67,100	97,800	67,600	109,600	82,000	81,700	73,400	74,400	60,600	S	S	S	40,800	81,100
Male	67,000	99,700	67,100	109,600	82,100	82,600	74,300	74,500	S	S	S	S	41,800	80,800
Female	67,200	81,900	S	105,400	81,800	81,000	69,000	71,400	S	S	S	S	39,500	S
Health	62,700	85,300	63,000	99,500	66,300	74,400	64,400	68,300	51,300	S	S	S	44,400	90,100
Male	61,700	91,800	S	104,600	71,500	76,500	62,700	77,600	S	S	S	S	40,700	S
Female	63,500	81,200	65,600	91,200	65,000	71,800	64,400	64,500	51,800	S	S	S	47,600	85,300

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Median annual salaries are for principal job and are rounded to nearest 100.4 -year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 61. Median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and faculty rank: 2006
(Dollars)

Field and race/ethnicity	All full time employed	$\begin{array}{r} \text { Full } \\ \text { professor } \end{array}$	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
All fields	70,900	98,900	71,600	60,000	50,600	64,500	46,500
American Indian/Alaska Native	72,100	93,600	66,500	52,700	S	S	54,500
Asian	64,400	99,500	74,600	67,500	51,000	S	41,600
Black	64,700	90,000	68,800	59,400	50,500	S	45,700
Hispanic	65,800	83,700	72,700	59,600	51,600	S	46,400
White	72,900	99,900	71,400	59,900	49,900	66,200	49,500
Other race/ethnicity ${ }^{\text {a }}$	61,800	S	S	S	S	S	S
Science	69,900	95,300	70,000	57,700	50,000	58,100	46,400
American Indian/Alaska Native	69,000	84,400	61,900	51,800	S	S	S
Asian	60,000	99,100	74,400	61,900	49,900	S	40,900
Black	62,900	87,500	64,900	57,000	50,300	S	46,900
Hispanic	64,700	84,200	72,500	56,900	S	S	47,500
White	71,000	96,900	69,900	56,700	49,900	59,700	49,300
Other race/ethnicity ${ }^{\text {a }}$	63,400	S	S	S	S	S	S
Biological, agricultural, and environmental life sciences	68,800	102,200	75,200	62,900	50,100	S	42,800
American Indian/Alaska Native	76,000	100,500	S	S	S	S	S
Asian	52,600	118,800	79,500	69,000	49,900	S	39,800
Black	58,600	86,100	63,200	57,600	S	S	41,700
Hispanic	60,400	97,300	73,800	60,800	S	S	40,600
White	71,900	101,300	74,700	62,000	49,600	S	44,500
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Computer and information sciences	79,900	99,100	80,500	74,200	S	S	80,200
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	80,000	98,300	84,900	74,300	S	S	S
Black	S	S	S	S	S	S	S
Hispanic	S	S	S	S	S	S	S
White	79,900	100,500	79,100	74,600	S	S	80,500
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Mathematics and statistics	70,800	94,700	63,900	57,000	51,800	S	48,700
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	64,200	80,100	60,500	50,200	S	S	48,900
Black	63,200	S	S	S	S	S	S
Hispanic	67,600	71,600	S	S	S	S	S
White	73,900	99,300	63,700	57,900	51,600	S	48,000
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Physical sciences	68,200	94,300	65,000	55,000	49,100	S	49,800
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	59,400	98,600	66,700	58,600	S	S	41,700
Black	52,100	S	S	S	S	S	S
Hispanic	69,000	86,900	70,100	S	S	S	46,500
White	69,900	94,300	64,900	54,300	49,300	S	53,400
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Psychology	65,600	90,000	67,700	54,700	49,200	S	54,300
American Indian/Alaska Native	62,900	S	S	S	S	S	S
Asian	54,800	S	73,900	54,500	S	S	40,400
Black	63,100	89,000	63,400	55,300	S	S	63,500
Hispanic	58,800	76,800	68,500	51,700	S	S	53,800
White	67,100	90,000	67,700	54,800	44,900	S	54,800
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Social sciences	70,000	91,400	66,900	53,900	45,300	S	61,500
American Indian/Alaska Native	60,700	S	S	S	S	S	S

TABLE 61. Median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and faculty rank: 2006
(Dollars)

Field and race/ethnicity	All full time employed	Full professor	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
Asian	64,800	86,300	66,900	55,000	S	S	49,600
Black	66,700	81,200	65,900	60,200	S	S	67,000
Hispanic	68,200	83,100	69,700	54,300	S	S	71,200
White	71,800	92,900	66,100	53,300	46,400	S	62,000
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Engineering	82,900	109,300	81,900	74,000	61,900	S	43,000
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	74,200	99,800	79,200	74,200	S	S	41,500
Black	78,000	99,000	S	67,100	S	S	S
Hispanic	72,800	80,400	S	68,900	S	S	S
White	87,500	113,000	83,600	74,300	52,000	S	49,000
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Health	71,100	94,900	71,600	64,800	50,700	S	50,300
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	65,800	S	S	70,600	S	S	42,500
Black	72,000	S	79,500	64,200	S	S	S
Hispanic	68,600	S	S	S	S	S	S
White	71,300	94,400	71,300	64,300	49,700	S	60,600
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Median annual salaries are for principal job and are rounded to nearest 100. 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 62. Median annual salaries of full time employed doctoral scientists and engineers in 4 -year educational institutions, by broad field of doctorate, sex, and tenure status: 2006
(Dollars)

Field and sex	All full time employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
All fields	70,900	85,000	62,400	62,700	50,000
Male	75,000	89,800	64,900	67,900	50,000
Female	62,900	75,500	57,800	58,500	48,900
Science	69,900	83,900	59,500	60,700	50,000
Male	74,900	86,500	61,800	67,100	51,000
Female	60,900	74,800	54,900	56,800	48,400
Biological, agricultural, and environmental life sciences	68,800	89,800	68,600	61,400	44,600
Male	74,300	90,700	69,900	67,700	44,800
Female	58,000	84,200	62,200	55,200	43,200
Computer and information sciences	68,800	89,800	68,600	61,400	44,600
Male	80,800	89,800	74,900	64,700	80,400
Female	78,700	82,000	73,200	S	S
Mathematics and statistics	70,800	81,000	60,100	46,300	51,000
Male	74,800	84,100	62,800	46,600	50,700
Female	63,000	70,100	53,300	40,500	52,700
Physical sciences	68,200	82,400	55,400	64,600	50,000
Male	71,000	84,900	56,600	65,300	51,600
Female	57,600	67,700	53,000	63,800	46,800
Psychology	65,600	79,700	52,800	59,800	61,700
Male	72,000	84,900	54,800	74,300	64,500
Female	62,400	73,200	51,600	57,800	58,000
Social sciences	70,000	79,600	54,500	59,500	62,300
Male	75,000	82,600	55,300	66,200	67,200
Female	63,900	73,700	53,400	50,300	59,200
Engineering	82,900	98,700	75,500	68,300	47,300
Male	84,800	99,800	75,900	68,700	47,800
Female	71,800	84,300	73,300	67,600	42,100
Health	71,100	80,000	64,800	71,100	58,900
Male	78,900	83,300	67,500	75,700	69,700
Female	69,400	79,100	64,300	69,900	57,100

S = suppressed for reliability or confidentiality.
NOTES: Median annual salaries are for principal job and are rounded to nearest 100.4 -year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 63. Median annual salaries of full time employed doctoral scientists and engineers in 4 -year educational institutions, by broad field of doctorate, sex, tenure status, and years since doctorate: 2006
(Dollars)

Field and sex	All full time employed		Tenured		Not tenured				Tenure not applicable			
			On tenure track	Not on tenure track								
	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	10 or more			Less than 10	10 or more	Less than 10	10 or more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	10 or more	Less than 10	10 or more
All fields	52,500	84,900	63,500	89,000	59,700	73,900	52,900	74,600	42,800	75,800		
Male	53,900	88,800	64,600	90,000	62,900	74,900	52,600	79,700	42,900	80,000		
Female	51,000	74,900	62,600	79,400	55,000	67,000	54,200	65,100	42,000	69,500		
Science	50,400	82,600	60,700	85,900	55,900	73,300	50,000	74,500	42,800	74,500		
Male	51,900	85,300	60,000	89,800	59,500	74,600	50,000	79,200	43,300	79,900		
Female	49,900	74,700	61,200	78,300	53,000	67,800	50,000	64,900	42,000	68,600		
Biological, agricultural, and environmental life sciences	45,700	84,800	59,000	91,500	61,600	78,000	50,700	71,300	40,800	68,800		
Male	47,800	88,500	59,500	93,000	64,700	79,800	51,600	74,700	41,800	73,200		
Female	44,300	75,300	50,200	87,800	53,400	74,300	49,900	63,700	40,000	64,200		
Computer and information sciences	76,100	88,200	78,500	93,900	74,600	74,700	64,800	S	82,900	72,500		
Male	76,200	89,000	78,800	95,300	74,600	74,600	59,300	S	85,200	S		
Female	75,000	86,600	S	86,900	72,700	S	S	S	S	S		
Mathematics and statistics	53,300	82,400	57,600	84,800	59,400	72,000	43,400	51,800	48,100	81,000		
Male	53,000	84,700	56,400	86,200	60,500	73,100	43,200	60,700	47,900	83,000		
Female	53,900	69,400	59,300	72,300	52,700	S	S	35,200	47,700	S		
Physical sciences	50,000	82,000	55,600	84,800	54,100	62,900	50,800	77,100	44,200	80,000		
Male	50,000	84,700	56,100	87,900	55,100	62,700	49,900	75,800	43,800	83,200		
Female	49,800	68,700	54,900	69,200	52,500	58,300	54,500	78,000	44,400	57,200		
Psychology	52,000	79,900	59,600	82,600	51,600	59,800	53,000	77,900	47,900	77,400		
Male	52,700	85,000	54,500	86,500	52,400	65,300	49,900	87,200	51,900	77,500		
Female	51,800	74,300	60,000	74,900	50,800	54,800	53,900	65,000	46,900	75,000		
Social sciences	54,700	79,800	61,800	81,600	54,000	59,800	47,500	78,100	53,400	73,500		
Male	56,100	84,800	61,100	85,000	54,900	61,000	48,600	81,900	59,000	77,200		
Female	53,300	74,900	61,600	76,800	53,300	59,400	45,000	72,300	48,900	68,400		
Engineering	67,100	97,800	77,300	99,900	75,000	76,400	61,600	84,800	41,500	84,800		
Male	67,000	99,700	77,100	99,900	75,600	79,900	61,300	89,900	41,900	86,700		
Female	67,200	81,900	79,400	85,500	72,200	S	S	S	39,600	77,900		
Health	62,700	85,300	64,400	88,000	64,600	65,500	69,600	75,300	46,000	87,800		
Male	61,700	91,800	62,900	88,300	64,900	78,500	S	92,200	44,400	97,100		
Female	63,500	81,200	64,500	87,800	64,400	64,200	72,200	69,100	47,900	84,100		

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Median annual salaries are for principal job and are rounded to nearest 100. 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 64. Median annual salaries of full time employed doctoral scientists and engineers in 4 -year educational institutions, by broad field of doctorate, race/ethnicity, and tenure status: 2006
(Dollars)

Field and race/ethnicity	All full time employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
All fields	70,900	85,000	62,400	62,700	50,000
American Indian/Alaska Native	72,100	79,600	52,400	S	58,100
Asian	64,400	87,700	69,800	62,000	42,000
Black	64,700	77,600	61,600	57,800	50,000
Hispanic	65,800	77,200	59,700	64,100	49,300
White	72,900	85,800	60,800	63,000	53,600
Other race/ethnicity ${ }^{\text {a }}$	61,800	S	S	S	S
Science	69,900	83,900	59,500	60,700	50,000
American Indian/Alaska Native	69,000	77,600	52,000	S	60,000
Asian	60,000	83,700	65,600	59,300	41,900
Black	62,900	73,000	58,700	56,500	50,500
Hispanic	64,700	75,900	57,700	61,600	49,400
White	71,000	84,800	58,000	61,400	52,700
Other race/ethnicity ${ }^{\text {a }}$	63,400	S	S	S	S
Biological, agricultural, and environmental life sciences	68,800	89,800	68,600	61,400	44,600
American Indian/Alaska Native	76,000	88,900	S	S	S
Asian	52,600	92,200	74,100	56,300	40,300
Black	58,600	79,700	63,000	56,100	45,100
Hispanic	60,400	79,200	59,300	77,100	41,900
White	71,900	89,600	67,800	61,800	47,000
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Computer and information sciences	79,900	87,700	74,900	78,900	79,200
American Indian/Alaska Native	S	S	S	S	S
Asian	80,000	92,700	74,800	S	S
Black	S	S	S	S	S
Hispanic	S	S	S	S	S
White	79,900	84,400	75,200	73,100	79,500
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Mathematical sciences	70,800	81,000	60,100	46,300	51,000
American Indian/Alaska Native	S	S	S	S	S
Asian	64,200	70,400	66,100	S	49,200
Black	63,200	S	S	S	S
Hispanic	67,600	71,200	S	S	S
White	73,900	84,700	59,100	45,900	50,600
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Physical sciences	68,200	82,400	55,400	64,600	50,000
American Indian/Alaska Native	S	S	S	S	S
Asian	59,400	83,100	58,600	64,100	43,300
Black	52,100	62,900	S	S	S
Hispanic	69,000	75,000	S	S	S
White	69,900	83,200	54,800	67,400	51,900
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Psychology	65,600	79,700	52,800	59,800	61,700
American Indian/Alaska Native	62,900	S	S	S	S
Asian	54,800	75,200	54,400	S	41,500
Black	63,100	69,500	52,900	S	59,500
Hispanic	58,800	73,500	52,700	S	55,200
White	67,100	79,900	52,500	59,800	63,600
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S

TABLE 64. Median annual salaries of full time employed doctoral scientists and engineers in 4 -year educational institutions, by broad field of doctorate, race/ethnicity, and tenure status: 2006
(Dollars)

Field and race/ethnicity	All full time employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
Social sciences	70,000	79,600	54,500	59,500	62,300
American Indian/Alaska Native	60,700	70,800	S	S	S
Asian	64,800	79,400	54,000	63,200	52,500
Black	66,700	71,500	61,100	S	59,000
Hispanic	68,200	76,300	54,600	S	70,300
White	71,800	79,800	54,000	59,100	64,800
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Engineering	82,900	98,700	75,500	68,300	47,300
American Indian/Alaska Native	S	S	S	S	S
Asian	74,200	94,000	76,100	64,300	42,000
Black	78,000	97,300	65,000	S	S
Hispanic	72,800	78,700	68,900	S	S
White	87,500	99,400	76,000	69,500	51,000
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Health	71,100	80,000	64,800	71,100	58,900
American Indian/Alaska Native	S	S	S	S	S
Asian	65,800	S	68,600	S	47,900
Black	72,000	82,800	65,800	S	S
Hispanic	68,600	S	S	S	S
White	71,300	79,700	64,300	72,700	63,400
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{a}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Median annual salaries are for principal job and are rounded to nearest 100. 4 -year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 65. Median annual salaries of full time employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006 (Thousands of dollars)

	All full time employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
Occupation	Total	Male	Female																		
All occupations	85.9	92.0	71.8	79.7	79.9	77.3	87.9	91.9	73.4	70.5	75.0	66.0	74.8	80.0	64.5	87.0	92.9	71.9	65.0	69.9	60.2
Science occupations	78.2	83.0	66.9	73.0	74.0	68.6	80.0	83.7	69.5	64.5	64.9	61.8	69.8	73.8	61.4	80.0	84.8	67.0	64.1	70.3	S
Biological, agricultural, or other life scientist	73.8	80.0	62.8	77.2	72.2	90.6	69.6	75.0	59.4	57.3	59.8	54.5	62.7	68.8	55.5	75.0	80.0	64.6	S	S	S
Agricultural/food scientist	80.0	83.5	68.8	S	S	S	69.4	70.8	59.2	71.4	69.7	S	68.1	69.8	S	84.4	84.9	70.9	S	S	S
Biochemist/biophysicist	77.3	80.0	65.1	S	S	S	65.9	66.2	61.5	S	S	S	54.2	S	S	80.0	85.1	69.1	S	S	S
Biological scientist	67.9	75.3	57.9	S	S	S	60.8	72.8	50.5	57.1	S	S	54.4	58.2	46.8	69.7	78.1	59.8	S	S	S
Forestry/conservation scientist	77.8	81.0	70.9	S	S	S	S	S	S	S	S	S	S	S	S	79.3	82.0	71.1	S	S	S
Medical scientist	85.9	94.5	69.6	88.0	S	S	73.1	83.0	58.1	54.5	47.9	54.2	68.3	72.8	67.3	90.0	99.8	74.6	S	S	S
Postsecondary teacher, agricultural/other natural sciences	71.2	73.6	64.6	S	S	S	67.1	57.0	S	S	S	S	S	S	S	71.1	73.5	64.5	S	S	S
Postsecondary teacher, biological sciences	64.9	67.9	56.0	S	S	S	74.1	76.2	70.4	57.2	59.6	54.5	60.9	63.0	53.6	64.9	67.8	55.9	S	S	S
Other biological/agricultural/life scientist	69.9	72.1	67.0	S	S	S	69.3	71.4	58.9	S	S	S	59.9	S	S	72.2	72.9	67.9	S	S	S
Computer and information scientist	97.2	99.1	89.4	S	S	S	96.3	97.4	94.6	80.8	80.6	S	91.1	90.2	S	99.1	99.5	83.3	S	S	S
Computer/information scientist	100.0	101.2	97.0	S	S	S	99.2	99.4	97.1	86.1	83.2	S	97.8	96.5	S	104.0	104.6	96.9	S	S	S
Postsecondary teacher, computer science	79.6	81.4	72.9	S	S	S	79.4	78.9	79.1	S	S	S	S	S	S	79.9	82.9	70.8	S	S	S
Mathematical scientist	78.0	79.5	68.3	S	S	S	77.1	77.6	75.4	63.1	64.7	59.5	67.2	67.1	S	79.4	81.9	67.0	S	S	S
Mathematical scientist	99.6	100.2	90.9	S	S	S	91.9	97.6	79.8	S	S	S	80.4	77.7	S	104.6	104.8	100.9	S	S	S
Postsecondary teacher, mathematics/statistics	64.8	66.8	60.0	S	S	S	61.4	61.8	59.0	59.4	S	S	64.8	64.9	S	65.1	69.7	59.4	S	S	S
Physical scientist	84.0	86.9	69.6	72.5	73.0	S	82.2	84.5	75.0	60.5	61.6	58.9	74.9	82.3	69.1	84.7	88.4	69.2	S	S	S
Chemist, except biochemist	95.0	96.9	88.9	S	S	S	90.8	91.6	88.5	95.2	95.8	S	94.8	94.9	S	96.7	98.7	89.0	S	S	S
Earth/atmospheric/ocean scientist	86.5	89.9	67.1	S	S	S	69.5	77.6	59.2	S	S	S	79.5	83.5	S	90.0	95.8	73.7	S	S	S
Physicist/astronomer	99.6	100.0	86.9	S	S	S	89.8	92.8	67.4	S	S	S	74.6	76.9	S	102.3	103.8	93.8	S	S	S
Postsecondary teacher, chemistry	60.0	63.6	54.0	S	S	S	57.3	59.7	S	52.2	52.9	S	70.9	75.3	S	61.1	64.0	54.2	S	S	S
Postsecondary teacher, physics	69.8	70.0	59.8	S	S	S	67.7	77.3	S	S	S	S	53.9	53.8	S	69.9	70.2	62.4	S	S	S
Postsecondary teacher, other physical sciences	67.8	70.1	62.3	S	S	S	59.8	60.9	S	S	S	S	S	S	S	68.2	70.3	62.6	S	S	S
Other physical scientist	89.4	90.3	73.7	S	S	S	77.7	75.6	S	S	S	S	S	S	S	92.1	94.4	72.0	S	S	S
Psychologist	72.0	79.8	65.7	69.8	76.7	60.7	63.9	69.6	63.4	64.5	65.1	64.0	65.6	78.8	60.6	74.4	79.9	66.9	S	S	S
Psychologist	79.6	85.0	71.9	69.4	S	S	69.4	68.4	69.4	69.0	77.5	65.1	75.1	96.6	67.7	79.8	85.0	74.0	S	S	S
Postsecondary teacher, psychology	62.7	67.7	57.6	S	S	S	59.1	S	54.5	59.0	61.5	57.2	56.0	63.5	51.5	63.5	69.0	57.8	S	S	S
Social scientist	72.8	76.8	64.9	70.1	70.9	S	68.1	72.5	64.3	65.6	64.7	67.7	69.6	79.2	60.5	74.7	79.4	65.4	S	S	S
Economist	109.2	114.1	99.3	S	S	S	95.6	82.3	96.1	S	S	S	95.5	90.0	S	120.2	124.4	101.7	S	S	S
Political scientist	74.8	82.3	67.5	S	S	S	S	S	S	S	S	S	S	S	S	76.0	82.8	66.0	S	S	S
Postsecondary teacher, economics	82.8	85.4	74.8	S	S	S	79.2	86.1	62.1	65.5	65.9	S	S	S	S	83.9	87.3	75.1	S	S	S
Postsecondary teacher, political science	61.9	61.8	61.8	S	S	S	57.5	S	S	59.3	57.9	S	62.8	S	S	63.3	63.6	62.2	S	S	S
Postsecondary teacher, sociology	61.7	64.6	59.4	S	S	S	55.5	S	S	57.6	59.6	57.0	53.9	S	S	62.1	64.7	59.9	S	S	S

TABLE 65. Median annual salaries of full time employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

	All full time employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Otherrace/ethnicity ${ }^{\text {a }}$		
Occupation	Total	Male	Female																		
Postsecondary teacher, other social sciences	63.0	69.2	58.0	63.3	S	S	55.7	60.9	54.4	64.1	S	56.2	64.1	74.2	59.8	63.0	69.6	59.0	S	S	S
Sociologist/anthropologist	69.3	71.3	64.9	S	S	S	S	S	S	S	S	S	S	S	S	70.3	75.6	68.1	S	S	S
Other social scientist	75.2	85.6	70.6	S	S	S	64.3	S	64.8	81.2	S	79.1	S	S	S	75.5	87.3	67.8	S	S	S
Engineering occupations	98.4	99.8	88.8	96.0	94.6	S	94.0	95.5	84.9	81.9	81.8	80.6	84.7	85.9	74.7	99.9	100.0	89.7	S	S	S
Aerospace/aeronautical/astronautical engineer	109.3	109.6	96.1	S	S	S	101.0	101.0	S	S	S	S	S	S	S	110.0	110.9	89.8	S	S	S
Chemical engineer	103.1	104.5	98.5	S	S	S	99.3	99.8	88.0	S	S	S	S	S	S	109.9	109.3	107.5	S	S	S
Civil/architectural/sanitary engineer	84.7	86.2	80.6	S	S	S	84.7	87.4	S	S	S	S	80.3	80.8	S	87.3	87.8	85.1	S	S	S
Electrical engineer	109.0	109.9	99.2	S	S	S	100.0	103.0	96.2	S	S	S	112.8	121.8	S	115.8	116.8	98.9	S	S	S
Materials/metallurgical engineer	94.8	95.0	S	S	S	S	107.7	105.2	S	S	S	S	S	S	S	94.3	89.2	S	S	S	S
Mechanical engineer	94.6	94.9	73.9	S	S	S	89.4	89.7	71.0	S	S	S	S	S	S	99.3	99.2	S	S	S	S
Postsecondary teacher, engineering	85.4	87.2	75.4	S	S	S	79.5	79.9	68.8	78.5	79.1	S	74.5	75.3	S	87.4	89.7	79.3	S	S	S
Other engineer	94.9	96.5	90.0	S	S	S	85.4	85.1	86.7	76.7	S	S	89.7	90.3	S	99.4	99.8	94.1	S	S	S
Science and engineering-related occupations	99.0	114.7	76.9	76.8	94.4	S	101.8	113.2	75.0	82.8	91.9	75.0	79.4	98.4	73.3	99.2	117.8	77.7	S	S	S
Health occupation, except postsecondary teacher	99.1	122.0	80.0	S	S	S	87.8	93.9	71.5	79.4	104.9	67.0	78.8	128.7	60.7	99.6	126.8	81.7	S	S	S
Postsecondary teacher, health and related sciences	78.5	89.4	69.6	S	S	S	73.8	78.0	72.7	77.4	80.0	76.0	64.5	S	67.5	79.3	92.4	69.5	S	S	S
SEH manager	130.0	137.1	107.6	S	S	S	129.3	136.7	104.1	104.1	108.1	S	111.4	136.1	S	134.0	138.0	113.9	S	S	S
SEH precollege teacher	50.7	51.9	49.5	S	S	S	49.3	S	S	S	S	S	S	S	S	50.4	50.9	49.5	S	S	S
SEH technician/technologist	79.1	83.6	53.2	S	S	S	79.7	87.5	56.6	S	S	S	S	S	S	77.9	80.3	S	S	S	S
Other SEH-related occupation	106.0	105.4	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Non-science and engineering occupations	100.0	110.0	83.9	99.0	107.5	91.7	99.8	105.0	81.5	79.0	91.2	69.1	89.1	98.0	71.5	100.4	112.5	85.6	S	S	S
Arts/humanities-related occupation	69.2	69.4	69.0	S	S	S	81.9	S	S	S	S	S	S	S	S	68.3	69.0	67.3	S	S	S
Management-related occupation	94.7	99.1	89.1	S	S	S	99.2	97.8	93.2	71.0	93.8	66.4	96.5	97.7	S	94.7	99.1	89.3	S	S	S
Non-SEH manager	138.0	144.8	117.2	132.2	133.7	S	144.6	148.4	121.1	101.3	119.8	85.6	119.1	128.5	87.6	139.6	145.0	119.5	S	S	S
Non-SEH postsecondary teacher	69.5	79.8	60.0	S	S	S	65.1	79.7	52.7	66.6	68.8	65.3	62.1	65.5	59.7	69.7	80.2	60.0	S	S	S
Non-SEH precollege/other teacher	49.5	47.5	54.5	S	S	S	S	S	S	S	S	S	S	S	S	44.7	40.5	44.8	S	S	S
Sales/marketing occupation	89.1	88.2	97.2	S	S	S	97.9	98.1	S	S	S	S	S	S	S	84.6	82.1	85.5	S	S	S
Social service-related occupation	56.8	59.7	50.3	S	S	S	45.7	S	S	51.5	S	S	S	S	S	57.1	63.1	50.3	S	S	S
Other non-SEH occupation	77.0	85.1	59.8	S	S	S	82.9	120.3	43.2	60.9	S	S	69.1	S	S	77.3	83.0	62.0	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 66. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and citizenship status: 2006
(Thousands of dollars)

Occupation	All full time employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
All occupations	85.9	89.0	85.8	97.7	72.0	79.7	54.4
Science occupations	78.2	80.0	78.6	89.0	64.9	74.8	49.9
Biological, agricultural, or other life scientist	73.8	77.9	74.9	82.6	48.3	57.3	40.8
Agricultural/food scientist	80.0	83.7	84.4	74.4	61.6	68.4	54.3
Biochemist/biophysicist	77.3	82.2	80.0	89.2	44.8	55.1	42.0
Biological scientist	67.9	72.0	69.9	79.3	42.1	48.6	39.2
Forestry/conservation scientist	77.8	79.3	78.3	S	S	S	S
Medical scientist	85.9	90.0	90.0	89.5	45.0	56.9	39.4
Postsecondary teacher, agricultural/other natural sciences	71.2	71.6	71.3	76.0	58.7	S	S
Postsecondary teacher, biological sciences	64.9	64.9	64.0	74.6	58.6	63.9	S
Other biological/agricultural/life scientist	69.9	72.7	71.2	79.3	44.8	44.5	44.9
Computer and information scientist	97.2	99.3	97.9	99.8	89.5	93.4	78.1
Computer/information scientist	100.0	104.0	103.0	107.1	95.0	98.2	81.9
Postsecondary teacher, computer science	79.6	81.5	79.6	88.1	75.3	79.1	68.2
Mathematical scientist	78.0	80.0	79.9	81.1	64.7	72.5	51.1
Mathematical scientist	99.6	104.0	104.3	100.7	79.5	88.6	72.4
Postsecondary teacher, mathematics/statistics	64.8	66.9	66.9	65.0	53.9	60.8	46.9
Physical scientist	84.0	86.8	84.9	92.9	64.0	76.2	49.5
Chemist, except biochemist	95.0	98.2	98.7	96.9	74.9	83.7	47.3
Earth/atmospheric/ocean scientist	86.5	94.5	94.3	92.9	54.6	78.0	47.5
Physicist/astronomer	99.6	104.1	103.0	107.9	65.8	80.8	52.7
Postsecondary teacher, chemistry	60.0	62.1	61.1	70.7	50.8	52.7	41.3
Postsecondary teacher, physics	69.8	70.0	69.8	77.9	59.1	58.5	52.7
Postsecondary teacher, other physical sciences	67.8	68.2	68.5	63.3	59.8	62.8	S
Other physical scientist	89.4	90.4	90.7	87.5	58.1	S	S
Psychologist	72.0	72.5	72.0	74.2	61.6	66.4	53.9
Psychologist	79.6	79.7	79.7	78.7	72.3	76.7	55.6
Postsecondary teacher, psychology	62.7	62.9	62.4	69.9	54.0	53.9	S
Social scientist	72.8	73.8	73.8	73.6	69.5	69.5	67.6
Economist	109.2	110.5	115.2	97.2	89.7	84.7	93.9
Political scientist	74.8	77.8	79.2	S	S	S	S
Postsecondary teacher, economics	82.8	84.8	82.2	85.9	79.7	87.8	62.2
Postsecondary teacher, political science	61.9	61.8	61.8	61.6	62.8	63.0	S
Postsecondary teacher, sociology	61.7	62.1	61.9	66.5	51.9	51.4	S
Postsecondary teacher, other social sciences	63.0	64.5	64.4	64.2	54.7	56.8	49.7
Sociologist/anthropologist	69.3	69.6	70.2	S	S	S	S
Other social scientist	75.2	76.1	76.8	72.3	58.6	S	S
Engineering occupations	98.4	99.9	99.9	99.8	80.2	91.8	69.9
Aerospace/aeronautical/astronautical engineer	109.3	109.8	110.0	109.6	41.5	75.6	S
Chemical engineer	103.1	106.0	106.0	105.6	82.0	94.6	56.0
Civil/architectural/sanitary engineer	84.7	89.9	84.8	92.9	76.4	79.8	64.9
Electrical engineer	109.0	114.8	119.4	109.1	99.8	104.0	85.6
Materials/metallurgical engineer	94.8	96.1	94.2	S	S	S	S
Mechanical engineer	94.6	99.7	99.4	99.8	79.4	87.0	70.0
Postsecondary teacher, engineering	85.4	88.9	87.6	89.6	74.8	79.0	60.4
Other engineer	94.9	99.7	99.7	97.6	68.9	87.9	51.0
Science and engineering-related occupations	99.0	99.6	96.9	117.0	69.3	78.9	56.5
Health occupation, except postsecondary teacher	99.1	99.8	99.4	119.8	48.0	46.6	48.4
Postsecondary teacher, health and related sciences	78.5	79.9	78.4	91.9	64.4	63.0	S
SEH manager	130.0	132.3	132.7	130.3	98.7	114.6	72.8
SEH precollege teacher	50.7	51.2	51.2	50.2	S	S	S

TABLE 66. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and citizenship status: 2006
(Thousands of dollars)

Occupation	All full time employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
SEH technician/technologist	79.1	82.6	79.9	88.0	58.9	78.5	36.9
Other SEH-related occupation	106.0	106.4	105.7	S	S	S	S
Non-science and engineering occupations	100.0	100.0	100.0	108.2	89.1	90.6	76.8
Arts/humanities-related occupation	69.2	69.3	68.5	82.4	S	S	S
Management-related occupation	94.7	94.6	94.3	95.7	97.1	99.9	86.9
Non-SEH manager	138.0	138.5	136.7	143.9	115.8	115.0	S
Non-SEH postsecondary teacher	69.5	69.8	68.7	81.0	58.0	58.6	56.6
Non-SEH precollege/other teacher	49.5	49.4	47.9	S	S	S	S
Sales/marketing occupation	89.1	88.9	84.0	98.5	89.6	97.1	S
Social service-related occupation	56.8	58.1	58.1	58.0	S	S	S
Other non-SEH occupation	77.0	78.4	77.5	105.6	47.7	47.7	S

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health .
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 67. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and age: 2006 (Thousands of dollars)

Occupation	All full time employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
All occupations	85.9	55.6	74.8	84.7	89.7	94.9	96.9	100.0	100.0
Science occupations	78.2	51.0	65.9	75.9	81.7	86.0	90.0	91.5	94.8
Biological, agricultural, or other life scientist	73.8	43.1	59.9	72.9	80.0	89.3	93.0	91.1	102.6
Agricultural/food scientist	80.0	52.9	70.6	76.7	79.9	97.8	89.7	76.0	90.7
Biochemist/biophysicist	77.3	41.9	67.7	84.5	91.2	104.7	107.0	99.4	96.3
Biological scientist	67.9	41.9	53.8	73.1	80.4	88.2	91.3	90.8	98.0
Forestry/conservation scientist	77.8	S	S	58.8	81.4	79.7	99.8	S	S
Medical scientist	85.9	43.6	61.2	81.3	94.6	108.6	111.0	108.8	127.7
Postsecondary teacher, agricultural/other natural sciences	71.2	55.8	53.2	63.2	74.3	78.8	97.0	69.8	S
Postsecondary teacher, biological sciences	64.9	46.5	52.9	58.6	62.5	68.9	72.1	84.3	96.4
Other biological/agricultural/ife scientist	69.9	44.5	76.2	61.1	97.9	75.0	97.6	S	S
Computer and information scientist	97.2	85.1	94.9	98.7	99.8	99.1	98.6	100.1	88.3
Computer/information scientist	100.0	90.1	99.4	101.2	109.8	108.9	107.0	101.2	86.3
Postsecondary teacher, computer science	79.6	76.6	75.9	79.0	79.9	79.2	84.8	98.3	89.3
Mathematical scientist	78.0	60.0	66.3	79.6	78.9	78.1	90.0	90.7	100.0
Mathematical scientist	99.6	78.6	99.0	104.3	111.3	107.7	104.6	107.4	108.9
Postsecondary teacher, mathematics/statistics	64.8	50.9	54.7	60.5	61.8	67.5	79.8	79.8	94.4
Physical scientist	84.0	55.3	69.8	83.1	89.2	91.4	99.8	102.2	98.3
Chemist, except biochemist	95.0	71.8	89.9	96.0	105.0	101.2	102.6	104.7	98.0
Earth/atmospheric/ocean scientist	86.5	51.5	67.3	78.9	89.5	99.8	111.6	111.2	113.5
Physicist/astronomer	99.6	56.5	82.2	99.1	109.9	108.4	117.1	119.6	128.9
Postsecondary teacher, chemistry	60.0	47.8	51.2	58.0	66.8	65.5	70.9	83.5	81.8
Postsecondary teacher, physics	69.8	50.8	56.0	64.5	65.4	73.2	75.7	85.8	87.6
Postsecondary teacher, other physical sciences	67.8	49.9	58.3	61.9	64.9	70.4	90.4	105.2	75.9
Other physical scientist	89.4	68.3	71.3	91.0	76.1	100.1	S	S	S
Psychologist	72.0	51.7	61.3	64.9	71.8	79.9	79.9	84.0	87.3
Psychologist	79.6	55.6	68.9	73.2	79.0	84.8	84.2	85.6	89.7
Postsecondary teacher, psychology	62.7	49.9	53.3	57.7	59.8	69.1	71.4	80.7	84.9
Social scientist	72.8	57.7	63.8	68.0	72.2	74.9	80.1	84.7	88.3
Economist	109.2	79.9	110.0	94.2	117.1	126.2	138.6	122.4	101.9
Political scientist	74.8	58.9	59.1	73.5	S	S	147.5	S	S
Postsecondary teacher, economics	82.8	71.9	72.2	79.6	77.6	91.6	80.4	87.6	95.9
Postsecondary teacher, political science	61.9	48.3	49.9	53.5	65.4	64.8	80.9	65.9	89.4
Postsecondary teacher, sociology	61.7	52.6	56.6	55.9	62.5	70.4	69.8	66.5	77.9
Postsecondary teacher, other social sciences	63.0	52.3	53.4	54.8	61.5	61.8	70.8	80.7	82.0
Sociologist/anthropologist	69.3	39.4	60.9	70.8	50.0	67.0	79.9	75.8	75.4
Other social scientist	75.2	68.1	74.5	72.0	83.4	77.1	76.8	121.3	S
Engineering occupations	98.4	79.2	92.8	96.4	100.7	104.1	109.0	108.2	107.2
Aerospace/aeronautical/astronautical engineer	109.3	80.1	95.8	100.6	108.9	120.6	116.9	131.6	S
Chemical engineer	103.1	81.8	98.4	100.5	109.5	118.6	115.4	114.0	S
Civil/architectural/sanitary engineer	84.7	61.9	77.3	86.6	90.6	90.8	91.2	90.3	108.1
Electrical engineer	109.0	89.7	109.4	109.9	114.8	121.2	122.4	124.5	115.0
Materials/metallurgical engineer	94.8	S	S	S	87.7	S	S	S	S
Mechanical engineer	94.6	77.8	90.4	90.3	99.7	113.5	100.5	105.8	88.3
Postsecondary teacher, engineering	85.4	72.2	78.0	81.2	89.9	88.7	97.3	97.2	91.9
Other engineer	94.9	72.0	89.9	94.9	99.0	99.8	109.6	112.8	120.1
Science and engineering-related occupations	99.0	46.7	83.9	106.9	109.8	102.6	99.7	105.0	106.4
Health occupation, except postsecondary teacher	99.1	44.0	72.8	114.4	124.3	119.9	98.9	119.0	126.5
Postsecondary teacher, health and related sciences	78.5	50.0	62.7	71.3	77.2	75.7	87.5	89.7	99.9
SEH manager	130.0	78.3	110.0	129.8	130.0	139.9	138.8	129.6	138.2
SEH precollege teacher	50.7	S	50.2	51.4	50.8	49.9	54.7	48.7	S
SEH technician/technologist	79.1	13.5	82.9	82.4	62.6	72.0	69.4	85.9	S

TABLE 67. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and age: 2006
(Thousands of dollars)

Occupation	All full time employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
Other SEH-related occupation	106.0	S	S	S	S	S	S	S	S
Non-science and engineering occupations	100.0	69.9	89.3	99.9	99.7	109.8	107.9	109.6	97.2
Arts/humanities-related occupation	69.2	54.5	69.4	75.5	81.6	75.6	36.6	69.8	12.8
Management-related occupation	94.7	80.9	97.4	97.5	95.0	104.3	97.5	92.6	74.9
Non-SEH manager	138.0	98.8	99.7	141.0	129.8	134.4	139.0	148.1	136.0
Non-SEH postsecondary teacher	69.5	52.9	60.1	64.4	67.5	69.0	74.1	88.5	80.0
Non-SEH precollege/other teacher	49.5	S	S	S	38.2	48.0	49.5	S	S
Sales/marketing occupation	89.1	73.4	98.4	99.7	91.3	94.6	72.1	65.5	36.1
Social service-related occupation	56.8	45.0	49.2	58.6	50.2	61.9	58.0	54.8	39.3
Other non-SEH occupation	77.0	69.4	76.9	90.2	73.8	100.8	77.6	41.3	29.1

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 68. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and years since doctorate: 2006
(Thousands of dollars)

Occupation	All full time employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	$\begin{array}{r} \text { More } \\ \text { than } 25 \end{array}$
All occupations	85.9	55.3	80.0	88.9	94.7	100.0	105.9
Science occupations	78.2	51.0	70.8	80.0	84.9	92.5	100.0
Biological, agricultural, or other life scientist	73.8	43.7	66.7	79.9	89.5	95.1	99.9
Agricultural/food scientist	80.0	58.2	71.1	78.7	85.9	101.6	89.9
Biochemist/biophysicist	77.3	41.8	78.0	89.6	101.5	109.2	111.7
Biological scientist	67.9	42.0	68.2	79.9	88.3	93.8	99.3
Forestry/conservation scientist	77.8	58.3	72.7	74.8	88.6	87.9	100.7
Medical scientist	85.9	43.0	76.6	90.7	104.0	124.1	126.9
Postsecondary teacher, agricultural/other natural sciences	71.2	54.0	61.3	70.3	75.6	81.2	79.9
Postsecondary teacher, biological sciences	64.9	48.0	52.6	59.6	69.7	71.2	85.0
Other biological/agricultural/life scientist	69.9	46.1	75.0	73.6	101.1	97.9	99.3
Computer and information scientist	97.2	79.9	95.7	98.7	109.0	102.6	104.1
Computerlinformation scientist	100.0	89.6	99.5	100.5	118.0	109.0	109.0
Postsecondary teacher, computer science	79.6	71.2	79.7	76.4	87.5	84.7	95.1
Mathematical scientist	78.0	54.4	68.1	79.1	81.1	81.7	100.0
Mathematical scientist	99.6	75.1	99.9	104.8	109.3	103.0	119.2
Postsecondary teacher, mathematics/statistics	64.8	49.9	54.5	63.0	69.7	73.7	89.5
Physical scientist	84.0	54.3	74.7	88.6	88.9	99.4	103.3
Chemist, except biochemist	95.0	66.9	91.1	99.7	103.9	109.1	107.0
Earth/atmospheric/ocean scientist	86.5	53.9	72.2	87.3	92.2	106.3	122.5
Physicist/astronomer	99.6	56.8	89.0	109.3	109.2	113.1	124.3
Postsecondary teacher, chemistry	60.0	46.6	52.6	60.0	67.1	72.1	82.2
Postsecondary teacher, physics	69.8	48.1	57.7	68.5	71.4	74.9	88.3
Postsecondary teacher, other physical sciences	67.8	52.0	59.5	65.0	69.0	75.9	99.1
Other physical scientist	89.4	67.7	78.9	90.6	96.4	111.2	111.0
Psychologist	72.0	52.3	64.2	70.9	79.2	81.0	89.8
Psychologist	79.6	55.9	71.9	79.4	81.8	87.6	96.8
Postsecondary teacher, psychology	62.7	49.9	53.9	57.9	66.2	72.2	84.2
Social scientist	72.8	54.9	64.6	71.8	75.5	85.3	92.7
Economist	109.2	80.1	114.7	100.6	104.7	138.0	139.8
Political scientist	74.8	57.9	78.1	S	S	S	94.5
Postsecondary teacher, economics	82.8	69.2	72.5	86.5	74.1	89.5	93.0
Postsecondary teacher, political science	61.9	48.5	53.6	60.2	62.6	78.6	80.9
Postsecondary teacher, sociology	61.7	50.5	55.0	58.1	71.1	79.8	77.1
Postsecondary teacher, other social sciences	63.0	50.1	54.9	62.0	76.2	70.7	87.2
Sociologist/anthropologist	69.3	54.9	69.1	70.5	66.9	80.2	79.9
Other social scientist	75.2	62.1	80.2	78.9	82.6	87.4	108.9
Engineering occupations	98.4	77.0	95.7	99.7	105.7	109.5	112.0
Aerospace/aeronautical/astronautical engineer	109.3	78.3	105.3	100.9	119.1	116.6	129.8
Chemical engineer	103.1	79.7	98.7	100.1	110.9	120.1	118.1
Civil/architectural/sanitary engineer	84.7	64.7	78.9	90.0	103.9	87.8	100.0
Electrical engineer	109.0	91.2	109.2	113.0	128.7	126.2	123.2
Materials/metallurgical engineer	94.8	S	S	S	S	S	S
Mechanical engineer	94.6	79.5	89.7	98.3	111.0	114.3	107.7
Postsecondary teacher, engineering	85.4	69.6	76.8	80.0	91.6	96.7	99.8
Other engineer	94.9	68.7	93.5	99.7	99.8	116.9	119.4
Science and engineering-related occupations	99.0	55.8	85.3	99.8	104.5	129.0	129.8
Health occupation, except postsecondary teacher	99.1	48.3	93.1	105.5	130.7	129.7	141.9
Postsecondary teacher, health and related sciences	78.5	59.6	66.5	73.8	86.0	94.9	112.6
SEH manager	130.0	84.4	109.8	129.2	130.2	144.8	142.9
SEH precollege teacher	50.7	47.6	49.7	55.0	50.0	52.0	48.8
SEH technician/technologist	79.1	38.0	73.0	83.8	87.5	82.2	85.0

TABLE 68. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and years since doctorate: 2006 (Thousands of dollars)

Occupation	All full time employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
Other SEH-related occupation	106.0	S	S	S	S	S	S
Non-science and engineering occupations	100.0	63.5	87.9	99.4	107.7	114.2	121.9
Arts/humanities-related occupation	69.2	59.4	69.2	73.5	90.0	69.7	54.4
Management-related occupation	94.7	71.5	95.3	98.6	106.0	101.3	98.6
Non-SEH manager	138.0	82.7	107.1	127.9	121.4	138.1	154.7
Non-SEH postsecondary teacher	69.5	50.9	61.2	66.2	74.8	86.4	93.4
Non-SEH precollege/other teacher	49.5	66.4	56.2	S	39.0	52.5	7.5
Sales/marketing occupation	89.1	72.2	95.7	98.9	104.7	97.2	56.5
Social service-related occupation	56.8	48.6	55.6	62.1	58.9	57.0	46.8
Other non-SEH occupation	77.0	64.8	83.1	72.1	92.2	99.3	73.9

SEH = science, engineering, and health.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 69. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and sector of employment: 2006

Occupation	All full time employed	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private-for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State, local government	$\begin{aligned} & \text { Self- } \\ & \text { employed }^{\text {d }} \end{aligned}$	Other ${ }^{\text {e }}$
All occupations	85.9	70.9	60.0	105.7	89.0	99.7	74.6	89.4	118.6
Science occupations	78.2	66.0	59.9	100.0	81.0	94.7	71.3	88.4	117.8
Biological, agricultural, or other life scientist	73.8	63.9	55.5	99.6	68.6	85.9	60.7	78.7	S
Agricultural/food scientist	80.0	69.0	S	91.7	78.7	84.2	S	83.3	S
Biochemist/biophysicist	77.3	48.6	S	98.7	57.7	66.7	S	S	S
Biological scientist	67.9	54.6	S	89.3	57.3	83.7	57.9	63.6	S
Forestry/conservation scientist	77.8	73.2	S	S	S	91.0	S	S	S
Medical scientist	85.9	68.0	S	104.4	79.2	92.9	63.0	S	S
Postsecondary teacher, agricultural/other natural sciences	71.2	71.3	S	S	S	S	S	S	S
Postsecondary teacher, biological sciences	64.9	65.4	54.2	S	S	S	S	S	S
Other biological/agricultural/life scientist	69.9	44.8	S	90.2	74.7	84.6	68.9	S	S
Computer and information scientist	97.2	79.7	S	106.8	102.4	111.3	81.2	94.8	S
Computer/information scientist	100.0	80.0	S	106.8	102.4	111.3	80.4	94.8	S
Postsecondary teacher, computer science	79.6	79.6	S	S	S	S	S	S	S
Mathematical scientist	78.0	65.1	50.0	106.5	103.3	103.5	53.9	S	S
Mathematical scientist	99.6	74.3	S	105.5	104.3	103.5	53.9	S	S
Postsecondary teacher, mathematics/statistics	64.8	64.8	50.0	S	S	S	S	S	S
Physical scientist	84.0	64.9	55.0	100.0	98.4	104.2	90.0	77.8	S
Chemist, except biochemist	95.0	54.4	S	99.9	94.2	94.9	71.8	78.9	S
Earth/atmospheric/ocean scientist	86.5	64.0	S	99.1	81.3	105.6	69.6	65.0	S
Physicist/astronomer	99.6	61.2	S	107.4	102.7	117.4	114.9	S	S
Postsecondary teacher, chemistry	60.0	61.0	55.1	S	S	S	S	S	S
Postsecondary teacher, physics	69.8	69.9	55.0	S	S	S	S	S	S
Postsecondary teacher, other physical sciences	67.8	68.1	S	S	S	S	S	S	S
Other physical scientist	89.4	46.5	S	92.1	S	102.7	55.7	S	S
Psychologist	72.0	64.6	68.2	87.4	69.7	90.6	71.3	94.1	S
Psychologist	79.6	66.1	68.8	87.4	69.6	90.6	71.3	94.1	S
Postsecondary teacher, psychology	62.7	62.5	64.7	S	S	S	S	S	S
Social scientist	72.8	69.0	57.9	108.2	89.3	99.0	64.9	61.0	131.7
Economist	109.2	99.2	S	145.5	100.6	105.4	90.0	55.3	138.1
Political scientist	74.8	64.9	S	S	S	S	S	S	S
Postsecondary teacher, economics	82.8	83.6	S	S	S	S	S	S	S
Postsecondary teacher, political science	61.9	61.9	55.3	S	S	S	S	S	S
Postsecondary teacher, sociology	61.7	62.0	49.5	S	S	S	S	S	S
Postsecondary teacher, other social sciences	63.0	63.0	S	S	S	S	S	S	S
Sociologist/anthropologist	69.3	61.2	S	77.2	80.6	86.5	59.1	S	S
Other social scientist	75.2	71.5	S	88.5	78.6	83.1	62.8	72.2	S

TABLE 69. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and sector of employment: 2006 (Thousands of dollars)

Occupation	All full time employed	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private-for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State, local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
Engineering occupations	98.4	83.0	48.6	100.9	113.8	103.0	84.5	119.3	S
Aerospace/aeronautical/astronautical engineer	109.3	78.7	S	109.4	112.7	109.7	S	S	S
Chemical engineer	103.1	63.3	S	104.5	143.9	103.1	S	S	S
Civil/architectural/sanitary engineer	84.7	78.5	S	89.8	S	85.5	75.5	70.4	S
Electrical engineer	109.0	83.2	S	109.6	122.1	102.9	91.2	134.2	S
Materials/metallurgical engineer	94.8	S	S	99.5	S	S	S	S	S
Mechanical engineer	94.6	69.4	S	94.5	S	105.9	S	S	S
Postsecondary teacher, engineering	85.4	85.9	S	S	S	S	S	S	S
Other engineer	94.9	65.0	S	99.5	98.2	99.7	81.3	97.2	S
Science and engineering-related occupations	99.0	80.0	51.3	135.9	109.6	106.7	83.7	98.9	S
Health occupation, except postsecondary teacher	99.1	73.8	S	132.6	104.3	89.9	62.4	105.8	S
Postsecondary teacher, health and related sciences	78.5	79.9	53.0	S	S	S	S	S	S
SEH manager	130.0	99.9	S	140.0	121.8	119.4	87.8	S	S
SEH precollege teacher	50.7	S	50.6	S	S	S	S	S	S
SEH technician/technologist	79.1	45.8	S	86.3	S	S	S	S	S
Other SEH-related occupation	106.0	S	S	S	S	S	S	S	S
Non-science and engineering occupations	100.0	92.8	69.2	119.8	86.5	115.9	74.5	73.1	173.1
Arts/humanities-related occupation	69.2	58.0	S	78.3	67.0	S	S	41.1	S
Management-related occupation	94.7	68.4	59.0	100.4	73.4	105.2	65.7	89.7	S
Non-SEH manager	138.0	119.9	88.1	156.5	129.8	148.0	89.6	191.4	190.2
Non-SEH postsecondary teacher	69.5	69.6	52.5	S	S	S	S	S	S
Non-SEH precollege/other teacher	49.5	S	49.8	40.8	S	S	S	S	S
Sales/marketing occupation	89.1	S	S	90.0	S	S	S	77.7	S
Social service-related occupation	56.8	55.7	67.3	56.0	44.4	S	47.4	60.6	S
Other non-SEH occupation	77.0	47.1	S	116.6	38.9	78.8	60.1	38.6	S

SEH = science, engineering, and health.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{c}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 70. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and disability status: 2006
(Thousands of dollars)

Occupation	All full time employed	With disability	Without disability
All occupations	85.9	86.0	85.8
Science occupations	78.2	79.3	78.0
Biological, agricultural, or other life scientist	73.8	79.3	73.5
Agricultural/food scientist	80.0	89.9	79.9
Biochemist/biophysicist	77.3	71.5	77.5
Biological scientist	67.9	71.4	66.5
Forestry/conservation scientist	77.8	S	76.6
Medical scientist	85.9	77.9	86.0
Postsecondary teacher, agricultural/other natural sciences	71.2	64.4	71.3
Postsecondary teacher, biological sciences	64.9	78.0	63.9
Other biological/agricultural/life scientist	69.9	76.2	69.7
Computer and information scientist	97.2	89.8	97.8
Computer/information scientist	100.0	95.1	100.9
Postsecondary teacher, computer science	79.6	77.8	79.7
Mathematical scientist	78.0	71.1	78.8
Mathematical scientist	99.6	76.3	99.7
Postsecondary teacher, mathematics/statistics	64.8	67.6	64.7
Physical scientist	84.0	85.9	84.0
Chemist, except biochemist	95.0	94.3	95.0
Earth/atmospheric/ocean scientist	86.5	87.2	86.4
Physicist/astronomer	99.6	93.6	99.7
Postsecondary teacher, chemistry	60.0	70.8	59.9
Postsecondary teacher, physics	69.8	71.2	69.8
Postsecondary teacher, other physical sciences	67.8	75.5	67.3
Other physical scientist	89.4	S	89.4
Psychologist	72.0	69.4	72.0
Psychologist	79.6	70.5	79.7
Postsecondary teacher, psychology	62.7	65.5	62.5
Social scientist	72.8	76.7	72.0
Economist	109.2	99.9	112.0
Political scientist	74.8	88.2	72.8
Postsecondary teacher, economics	82.8	95.5	80.7
Postsecondary teacher, political science	61.9	71.4	61.2
Postsecondary teacher, sociology	61.7	67.3	61.0
Postsecondary teacher, other social sciences	63.0	68.9	62.1
Sociologist/anthropologist	69.3	61.8	69.5
Other social scientist	75.2	73.8	75.2
Engineering occupations	98.4	99.8	97.9
Aerospace/aeronautical/astronautical engineer	109.3	107.6	109.4
Chemical engineer	103.1	S	101.6
Civil/architectural/sanitary engineer	84.7	S	84.8
Electrical engineer	109.0	98.8	109.6
Materials/metallurgical engineer	94.8	S	101.1
Mechanical engineer	94.6	85.0	94.6
Postsecondary teacher, engineering	85.4	87.6	85.1
Other engineer	94.9	101.5	94.7
Science and engineering-related occupations	99.0	93.6	99.1
Health occupation, except postsecondary teacher	99.1	85.9	99.2
Postsecondary teacher, health and related sciences	78.5	78.3	77.9
SEH manager	130.0	116.0	130.0
SEH precollege teacher	50.7	S	51.0

TABLE 70. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and disability status: 2006
(Thousands of dollars)

Occupation	All full time employed	With disability	Without disability
SEH technician/technologist	79.1	54.1	80.4
Other SEH-related occupation	106.0	S	105.0
Non-science and engineering occupations	100.0	93.3	100.0
Arts/humanities-related occupation	69.2	S	69.3
Management-related occupation	94.7	92.3	95.0
Non-SEH manager	138.0	135.1	138.3
Non-SEH postsecondary teacher	69.5	65.3	69.5
Non-SEH precollege/other teacher	49.5	S	49.8
Sales/marketing occupation	89.1	71.3	89.9
Social service-related occupation	56.8	S	55.2
Other non-SEH occupation	77.0	47.4	78.5

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTES: Median annual salaries are for principal job. The SESTAT surveys ask the degree of difficulty—none, slight, moderate, severe, or unable to do-an individual has in seeing (with glasses), hearing (with hearing aid), walking without assistance, or lifting 10 pounds. Those respondents who answered "moderate," "severe," or "unable to do" for any activity were classified as having a disability.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 71. Median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 2006
(Thousands of dollars)

Employment sector and occupation	All full time employed	Male	Female
All sectors	85.9	92.0	71.8
Science occupations	78.2	83.0	66.9
Biological, agricultural, or other life scientist	73.8	80.0	62.8
Computer and information scientist	97.2	99.1	89.4
Mathematical scientist	78.0	79.5	68.3
Physical scientist	84.0	86.9	69.6
Psychologist	72.0	79.8	65.7
Social scientist	72.8	76.8	64.9
Engineering occupations	98.4	99.8	88.8
Science and engineering-related occupations	99.0	114.7	76.9
Non-science and engineering occupations	100.0	110.0	83.9
4 -year educational institutions ${ }^{\text {a }}$	70.9	75.0	62.9
Science occupations	66.0	70.0	60.0
Biological, agricultural, or other life scientist	63.9	69.7	54.8
Computer and information scientist	79.7	82.2	71.8
Mathematical scientist	65.1	68.4	62.2
Physical scientist	64.9	67.8	55.7
Psychologist	64.6	68.6	59.8
Social scientist	69.0	72.0	61.0
Engineering occupations	83.0	84.7	74.5
Science and engineering-related occupations	80.0	90.1	70.5
Non-science and engineering occupations	92.8	99.7	76.6
Other educational institutions ${ }^{\text {b }}$	60.0	59.7	58.0
Science occupations	59.9	60.5	59.8
Biological, agricultural, or other life scientist	55.5	60.6	48.0
Computer and information scientist	S	S	S
Mathematical scientist	50.0	49.9	S
Physical scientist	55.0	54.9	54.1
Psychologist	68.2	73.3	61.7
Social scientist	57.9	55.0	59.9
Engineering occupations	48.6	48.6	S
Science and engineering-related occupations	51.3	52.0	50.3
Non-science and engineering occupations	69.2	79.6	62.3
Private for-profit ${ }^{\text {c }}$	105.7	110.0	96.9
Science occupations	100.0	102.2	91.8
Biological, agricultural, or other life scientist	99.6	100.0	91.8
Computer and information scientist	106.8	107.9	99.8
Mathematical scientist	106.5	108.3	102.8
Physical scientist	100.0	100.1	93.3
Psychologist	87.4	99.0	74.4
Social scientist	108.2	114.6	84.7
Engineering occupations	100.9	102.7	98.5
Science and engineering-related occupations	135.9	139.6	119.1
Non-science and engineering occupations	119.8	124.6	100.6
Private nonprofit	89.0	99.6	71.6
Science occupations	81.0	89.5	69.8
Biological, agricultural, or other life scientist	68.6	76.3	57.1
Computer and information scientist	102.4	102.4	S
Mathematical scientist	103.3	104.4	99.2
Physical scientist	98.4	99.1	86.2
Psychologist	69.7	73.3	68.7
Social scientist	89.3	105.9	79.9
Engineering occupations	113.8	115.7	103.9
Science and engineering-related occupations	109.6	137.2	78.2
Non-science and engineering occupations	86.5	95.8	69.9

TABLE 71. Median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 2006
(Thousands of dollars)

Employment sector and occupation	All full time employed	Male	Female
Federal government	99.7	100.6	90.0
Science occupations	94.7	98.0	84.6
Biological, agricultural, or other life scientist	85.9	89.8	79.1
Computer and information scientist	111.3	112.1	S
Mathematical scientist	103.5	104.1	89.2
Physical scientist	104.2	106.7	82.5
Psychologist	90.6	91.6	88.2
Social scientist	99.0	99.9	95.3
Engineering occupations	103.0	106.0	88.8
Science and engineering-related occupations	106.7	116.2	93.9
Non-science and engineering occupations	115.9	118.6	106.0
State and local government	74.6	77.6	69.3
Science occupations	71.3	72.3	66.8
Biological, agricultural, or other life scientist	60.7	60.9	58.9
Computer and information scientist	81.2	82.8	S
Mathematical scientist	53.9	S	S
Physical scientist	90.0	90.2	64.8
Psychologist	71.3	72.1	69.5
Social scientist	64.9	69.7	63.8
Engineering occupations	84.5	87.2	82.1
Science and engineering-related occupations	83.7	86.2	76.7
Non-science and engineering occupations	74.5	79.4	65.4
Self-employed ${ }^{\text {d }}$	89.4	98.1	79.3
Science occupations	88.4	95.8	79.8
Biological, agricultural, or other life scientist	78.7	73.2	S
Computer and information scientist	94.8	95.7	S
Mathematical scientist	S	S	S
Physical scientist	77.8	77.3	S
Psychologist	94.1	98.4	80.0
Social scientist	61.0	51.5	61.9
Engineering occupations	119.3	119.4	S
Science and engineering-related occupations	98.9	112.5	60.2
Non-science and engineering occupations	73.1	74.8	48.0
Other ${ }^{\text {e }}$	118.6	140.3	98.0
Science occupations	117.8	116.2	91.0
Biological, agricultural, or other life scientist	S	S	S
Computer and information scientist	S	S	S
Mathematical scientist	S	S	S
Physical scientist	S	S	S
Psychologist	S	S	S
Social scientist	131.7	139.8	S
Engineering occupations	S	S	S
Science and engineering-related occupations	S	S	S
Non-science and engineering occupations	173.1	188.4	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }} 4$-year educational institution includes 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institutions include 2 -year colleges, community colleges, technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 72. Median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006 (Thousands of dollars)

Employment sector and occupation	All full time employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{\text {a }}$
All sectors	85.9	79.7	87.9	70.5	74.8	87.0	65.0
Science occupations	78.2	73.0	80.0	64.5	69.8	80.0	64.1
Biological, agricultural, or other life scientist	73.8	77.2	69.6	57.3	62.7	75.0	S
Computer and information scientist	97.2	S	96.3	80.8	91.1	99.1	S
Mathematical scientist	78.0	S	77.1	63.1	67.2	79.4	S
Physical scientist	84.0	72.5	82.2	60.5	74.9	84.7	S
Psychologist	72.0	69.8	63.9	64.5	65.6	74.4	S
Social scientist	72.8	70.1	68.1	65.6	69.6	74.7	S
Engineering occupations	98.4	96.0	94.0	81.9	84.7	99.9	S
Science and engineering-related occupations	99.0	76.8	101.8	82.8	79.4	99.2	S
Non-science and engineering occupations	100.0	99.0	99.8	79.0	89.1	100.4	S
4-year educational institutions ${ }^{\text {b }}$	70.9	72.1	64.4	64.7	65.8	72.9	61.8
Science occupations	66.0	69.2	60.0	59.4	62.8	68.0	61.9
Biological, agricultural, or other life scientist	63.9	68.5	50.0	54.8	59.8	67.4	S
Computer and information scientist	79.7	S	79.6	S	74.8	79.9	S
Mathematical scientist	65.1	S	64.0	59.5	66.2	67.0	S
Physical scientist	64.9	70.0	57.9	48.6	66.3	67.1	S
Psychologist	64.6	64.6	58.1	59.5	56.9	64.9	S
Social scientist	69.0	64.9	64.4	64.7	64.6	69.8	S
Engineering occupations	83.0	S	74.8	75.5	77.0	87.0	S
Science and engineering-related occupations	80.0	S	67.6	77.7	70.0	82.0	S
Non-science and engineering occupations	92.8	96.8	81.0	75.2	73.6	94.9	S
Other educational institutions ${ }^{\text {c }}$	60.0	S	58.8	58.9	61.0	58.6	S
Science occupations	59.9	S	59.2	54.5	55.9	60.0	S
Biological, agricultural, or other life scientist	55.5	S	S	S	S	55.1	S
Computer and information scientist	S	S	S	S	S	S	S
Mathematical scientist	50.0	S	S	S	S	53.4	S
Physical scientist	55.0	S	S	S	S	55.3	S
Psychologist	68.2	S	S	S	70.5	68.1	S
Social scientist	57.9	S	S	S	S	58.5	S
Engineering occupations	48.6	S	S	S	S	S	S
Science and engineering-related occupations	51.3	S	49.7	S	S	50.8	S
Non-science and engineering occupations	69.2	S	S	59.6	S	69.8	S
Private-for-profit ${ }^{\text {d }}$	105.7	105.6	99.9	94.8	99.4	110.0	93.7
Science occupations	100.0	100.8	99.4	88.8	93.8	100.9	S
Biological, agricultural, or other life scientist	99.6	S	93.8	80.4	78.7	100.0	S
Computer and information scientist	106.8	S	100.0	82.6	106.7	109.7	S
Mathematical scientist	106.5	S	101.9	S	S	114.4	S
Physical scientist	100.0	S	96.7	96.8	93.9	100.0	S
Psychologist	87.4	S	S	64.4	S	85.4	S
Social scientist	108.2	S	77.1	S	S	115.9	S
Engineering occupations	100.9	S	99.8	91.4	90.3	105.9	S
Science and engineering-related occupations	135.9	S	124.1	105.3	125.2	139.7	S
Non-science and engineering occupations	119.8	110.4	109.4	101.6	119.7	124.3	S
Private non-profit	89.0	S	78.5	73.3	63.5	93.0	S
Science occupations	81.0	S	74.9	65.7	60.4	84.5	S
Biological, agricultural, or other life scientist	68.6	S	61.7	S	S	71.6	S
Computer and information scientist	102.4	S	88.5	S	S	108.1	S
Mathematical scientist	103.3	S	S	S	S	105.2	S
Physical scientist	98.4	S	78.1	S	S	102.1	S
Psychologist	69.7	S	S	S	S	71.5	S
Social scientist	89.3	S	82.5	S	S	89.9	S
Engineering occupations	113.8	S	100.1	S	S	121.5	S
Science and engineering-related occupations	109.6	S	101.0	S	S	114.0	S
Non-science and engineering occupations	86.5	S	64.9	79.0	56.8	88.9	S

TABLE 72. Median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006 (Thousands of dollars)

Employment sector and occupation	All full time employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Federal government	99.7	81.5	94.6	90.8	87.1	99.8	S
Science occupations	94.7	81.0	88.4	82.5	89.0	95.7	S
Biological, agricultural, or other life scientist	85.9	S	80.1	65.7	78.9	89.9	S
Computer and information scientist	111.3	S	S	S	S	113.3	S
Mathematical scientist	103.5	S	95.8	S	S	110.6	S
Physical scientist	104.2	S	98.8	S	S	105.0	S
Psychologist	90.6	S	S	S	S	90.6	S
Social scientist	99.0	S	96.4	S	S	99.4	S
Engineering occupations	103.0	S	99.7	S	S	105.4	S
Science and engineering-related occupations	106.7	S	101.3	S	S	109.0	S
Non-science and engineering occupations	115.9	S	103.7	S	S	117.5	S
State and local government	74.6	51.4	74.5	70.1	66.7	75.0	S
Science occupations	71.3	S	71.3	64.4	64.0	71.9	S
Biological, agricultural, or other life scientist	60.7	S	S	S	S	61.6	S
Computer and information scientist	81.2	S	76.1	S	S	83.8	S
Mathematical scientist	53.9	S	S	S	S	S	S
Physical scientist	90.0	S	80.7	S	S	89.1	S
Psychologist	71.3	S	S	S	S	71.7	S
Social scientist	64.9	S	S	S	S	67.6	S
Engineering occupations	84.5	S	88.2	S	S	81.7	S
Science and engineering-related occupations	83.7	S	81.8	S	S	84.6	S
Non-science and engineering occupations	74.5	S	46.8	76.1	S	76.5	S
Self-employed ${ }^{\text {e }}$	89.4	S	81.2	96.0	88.4	87.6	S
Science occupations	88.4	S	75.9	S	91.6	88.4	S
Biological, agricultural, or other life scientist	78.7	S	S	S	S	72.1	S
Computer and information scientist	94.8	S	S	S	S	88.0	S
Mathematical scientist	S	S	S	S	S	S	S
Physical scientist	77.8	S	S	S	S	77.3	S
Psychologist	94.1	S	S	S	S	95.0	S
Social scientist	61.0	S	S	S	S	57.7	S
Engineering occupations	119.3	S	S	S	S	124.4	S
Science and engineering-related occupations	98.9	S	S	S	S	109.0	S
Non-science and engineering occupations	73.1	S	93.0	S	S	58.7	S
Other ${ }^{\text {f }}$	118.6	S	35.3	S	S	143.4	S
Science occupations	117.8	S	53.9	S	S	130.7	S
Biological, agricultural, or other life scientist	S	S	S	S	S	S	S
Computer and information scientist	S	S	S	S	S	S	S
Mathematical scientist	S	S	S	S	S	S	S
Physical scientist	S	S	S	S	S	S	S
Psychologist	S	S	S	S	S	S	S
Social scientist	131.7	S	S	S	S	141.3	S
Engineering occupations	S	S	S	S	S	S	S
Science and engineering-related occupations	S	S	S	S	S	S	S
Non-science and engineering occupations	173.1	S	S	S	S	203.4	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{c}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{d}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 73. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and primary or secondary work activities: 2006 (Thousands of dollars)

Occupation	All full time employed	Computer applications	Management, sales, administration	Professional services	R\&D ${ }^{\text {a }}$	Teaching	Other
All occupations	85.9	94.7	106.9	86.0	90.0	63.5	75.8
Science occupations	78.2	95.6	92.7	79.5	84.7	61.0	69.8
Biological, agricultural, or other life scientist	73.8	66.7	89.9	84.7	75.8	58.8	60.2
Agricultural/food scientist	80.0	S	84.6	70.9	80.4	S	72.7
Biochemist/biophysicist	77.3	65.3	97.8	70.5	69.8	S	71.8
Biological scientist	67.9	S	80.5	85.0	64.5	S	62.3
Forestry/conservation scientist	77.8	S	72.9	S	79.8	S	S
Medical scientist	85.9	S	101.0	99.8	80.7	S	58.2
Postsecondary teacher, agricultural/other natural sciences	71.2	S	79.6	S	74.8	64.2	S
Postsecondary teacher, biological sciences	64.9	S	76.1	61.8	81.4	57.9	S
Other biological/agricultural/life scientist	69.9	S	72.7	74.0	69.4	S	44.6
Computer and information scientist	97.2	97.7	106.6	98.4	105.8	74.7	93.1
Computerlinformation scientist	100.0	97.8	108.3	98.2	109.4	S	94.6
Postsecondary teacher, computer science	79.6	S	94.6	S	91.1	74.9	80.7
Mathematical scientist	78.0	91.2	105.1	91.0	91.7	61.8	68.8
Mathematical scientist	99.6	99.1	108.7	101.8	99.3	S	94.7
Postsecondary teacher, mathematics/statistics	64.8	S	90.5	65.2	75.6	61.7	51.5
Physical scientist	84.0	85.8	97.7	95.2	95.0	59.9	74.4
Chemist, except biochemist	95.0	S	95.9	99.1	95.9	S	79.4
Earth/atmospheric/ocean scientist	86.5	85.9	106.4	78.0	85.6	S	76.0
Physicist/astronomer	99.6	89.3	110.6	125.3	99.3	73.5	91.4
Postsecondary teacher, chemistry	60.0	S	78.1	S	78.0	56.5	58.5
Postsecondary teacher, physics	69.8	S	74.1	S	86.6	61.7	62.1
Postsecondary teacher, other physical sciences	67.8	S	78.6	S	79.7	63.7	S
Other physical scientist	89.4	S	98.6	92.2	87.0	S	S
Psychologist	72.0	S	79.8	77.8	76.6	59.5	66.9
Psychologist	79.6	S	80.5	78.8	79.2	80.9	71.6
Postsecondary teacher, psychology	62.7	S	70.5	65.7	70.4	59.3	55.6
Social scientist	72.8	80.4	90.2	89.3	80.0	61.9	67.8
Economist	109.2	S	124.5	125.0	105.4	S	108.5
Political scientist	74.8	S	84.6	S	69.5	S	S
Postsecondary teacher, economics	82.8	S	89.7	S	93.8	75.0	67.3
Postsecondary teacher, political science	61.9	S	83.1	S	74.2	58.5	52.0
Postsecondary teacher, sociology	61.7	S	83.9	S	71.5	59.9	57.8
Postsecondary teacher, other social sciences	63.0	S	83.2	66.3	66.5	57.8	54.6
Sociologist/anthropologist	69.3	S	75.0	46.9	69.1	S	S
Other social scientist	75.2	S	84.7	88.9	71.7	S	69.1
Engineering occupations	98.4	99.6	107.9	92.6	99.8	79.9	90.6
Aerospace/aeronautical/astronautical engineer	109.3	105.6	123.0	S	105.7	S	99.1
Chemical engineer	103.1	107.6	111.9	S	99.8	S	93.2
Civil/architectural/sanitary engineer	84.7	S	81.4	89.2	81.4	S	84.2
Electrical engineer	109.0	99.6	116.4	115.2	108.2	S	99.3
Materials/metallurgical engineer	94.8	S	88.2	S	98.7	S	S
Mechanical engineer	94.6	S	98.5	88.2	93.7	S	95.2
Postsecondary teacher, engineering	85.4	S	105.6	S	89.0	79.9	77.7
Other engineer	94.9	82.4	105.1	90.0	91.6	S	91.1
Science and engineering-related occupations	99.0	84.1	124.4	99.5	104.5	64.7	74.7
Health occupation, except postsecondary teacher	99.1	S	96.1	110.7	79.6	86.1	50.6
Postsecondary teacher, health and related sciences	78.5	S	88.0	80.4	91.8	69.5	62.7
SEH manager	130.0	85.7	130.0	99.2	138.2	S	121.7
SEH precollege teacher	50.7	S	S	S	S	50.8	48.5

TABLE 73. Median annual salaries of full time employed doctoral scientists and engineers, by occupation and primary or secondary work activities: 2006 (Thousands of dollars)

Occupation	All full time employed	Computer applications	Management, sales, administration	Professional services	$\mathrm{R} \& \mathrm{D}^{\text {a }}$	Teaching	Other
SEH technician/technologist	79.1	83.9	80.8	S	66.5	S	65.5
Other SEH-related occupation	106.0	S	S	S	S	S	S
Non-science and engineering occupations	100.0	80.3	115.8	90.7	103.2	61.0	79.7
Arts/humanities-related occupation	69.2	S	78.9	69.5	45.9	S	47.9
Management-related occupation	94.7	95.1	94.8	93.6	98.8	51.0	87.5
Non-SEH manager	138.0	119.9	139.1	131.7	143.2	S	125.7
Non-SEH postsecondary teacher	69.5	S	76.3	58.7	84.6	64.6	56.3
Non-SEH precollege/other teacher	49.5	S	69.2	S	S	44.6	S
Sales/marketing occupation	89.1	S	84.2	87.0	99.9	S	99.5
Social service-related occupation	56.8	S	50.1	52.0	S	50.9	68.9
Other non-SEH occupation	77.0	S	39.2	116.2	81.4	S	42.2

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{a}$ R\&D includes applied or basic research, design, and development.
NOTES: Median annual salaries are for principal job. If respondent reported more than one category of activity as the primary or secondary work activity, respondent's salary appears in both categories.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 74. Median annual salaries of full time employed doctoral scientists and engineers, by employer location and broad occupation: 2006

Employer location	All full time employed	Science occupations							Engineering occupations	SEH-related occupations	Non-SEH occupations
		All science occupations	Biological, agricultural, or other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
All locations	85.9	78.2	73.8	97.2	78.0	84.0	72.0	72.8	98.4	99.0	100.0
New England	89.0	79.8	71.0	99.9	84.5	94.0	74.5	75.7	93.6	100.9	101.7
Connecticut	92.5	89.1	81.6	74.0	105.6	100.0	72.8	89.7	90.0	105.8	102.6
Maine	68.8	62.5	61.6	S	S	S	59.0	71.1	91.2	S	85.9
Massachusetts	89.7	82.6	70.6	103.7	78.0	99.0	79.4	75.2	93.1	106.7	119.6
New Hampshire	75.8	65.6	61.6	S	S	68.9	60.7	63.1	99.6	S	74.8
Rhode Island	85.5	79.1	69.1	S	S	97.8	75.0	73.4	91.5	90.6	77.4
Vermont	73.9	70.2	73.8	S	S	S	S	61.3	102.7	S	S
Middle Atlantic	89.9	83.3	82.6	97.9	89.1	84.6	77.5	74.9	95.7	100.4	110.0
New Jersey	99.9	97.0	99.1	100.7	83.8	94.8	85.9	88.0	97.9	112.6	111.7
New York	89.9	81.0	73.7	100.0	93.0	83.2	77.7	78.1	93.9	97.9	117.4
Pennsylvania	82.7	77.2	82.1	80.7	84.3	77.5	64.3	72.0	94.1	98.0	89.4
East North Central	80.0	73.6	72.4	82.2	74.1	75.0	69.3	69.8	92.1	93.5	96.8
Illinois	84.6	79.4	75.8	94.4	80.6	80.4	71.0	75.2	94.3	90.2	105.3
Indiana	79.3	74.2	88.5	59.3	62.1	74.7	59.5	66.3	80.4	84.6	98.0
Michigan	84.8	73.3	71.3	78.2	79.2	72.7	69.2	74.7	94.7	113.8	99.9
Ohio	80.0	73.1	73.3	76.1	78.0	79.0	69.0	69.0	95.4	82.4	89.3
Wisconsin	67.0	59.2	59.2	82.8	49.3	55.5	64.2	59.2	75.2	85.9	81.1
West North Central	73.7	66.8	68.5	90.0	67.3	66.3	63.9	61.9	89.6	85.3	92.2
lowa	70.3	65.0	70.5	S	67.6	60.9	56.4	59.4	72.4	75.9	79.9
Kansas	68.6	64.2	64.9	S	S	64.3	82.6	51.9	75.0	84.2	71.3
Minnesota	80.0	69.5	70.2	78.6	81.3	67.8	63.9	61.9	99.6	92.4	98.9
Missouri	71.4	63.7	62.2	S	64.5	69.3	53.6	71.4	92.9	75.8	99.4
Nebraska	69.2	65.0	67.9	S	S	S	S	S	S	S	S
North Dakota	69.9	67.6	72.1	S	S	54.6	68.8	61.9	S	83.5	75.4
South Dakota	61.1	60.0	58.6	S	S	S	57.9	S	S	S	S
South Atlantic	88.0	80.0	77.9	95.3	88.6	84.9	69.7	77.5	98.0	97.2	102.1
Delaware	98.5	89.8	105.1	98.0	S	85.5	79.7	S	103.0	S	106.2
District of Columbia	104.1	98.6	90.2	92.2	88.7	103.5	78.5	101.4	109.7	109.3	120.0
Florida	76.1	71.6	76.2	88.3	61.1	73.2	66.7	59.2	80.8	82.2	78.6
Georgia	74.3	65.9	67.1	83.9	57.3	63.2	65.0	60.7	89.0	91.0	96.1
Maryland	93.5	86.6	80.2	98.7	92.6	98.0	69.3	80.8	100.5	105.3	99.9
North Carolina	81.1	75.0	76.4	96.1	69.5	81.7	68.3	60.4	99.4	95.3	97.1
South Carolina	73.5	68.1	68.5	S	78.9	69.8	63.7	53.2	98.5	78.3	80.3
Virginia	95.0	84.1	72.3	100.9	100.3	88.2	72.0	73.3	109.8	96.1	109.7
West Virginia	79.1	73.6	75.5	S	S	77.5	S	68.2	72.8	112.9	S

TABLE 74. Median annual salaries of full time employed doctoral scientists and engineers, by employer location and broad occupation: 2006 (Thousands of dollars)

Employer location	All full time employed	Science occupations							Engineering occupations	SEH-related occupations	Non-SEH occupations
		All science occupations	Biological, agricultural, or other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
East South Central	75.2	69.4	65.6	84.4	61.6	69.1	75.9	65.2	87.9	79.0	96.9
Alabama	77.2	69.7	62.3	S	S	78.4	65.8	65.6	86.3	80.5	96.4
Kentucky	74.3	65.4	52.9	S	66.9	60.3	78.8	62.3	90.3	72.5	102.7
Mississippi	71.0	64.9	65.6	S	S	66.6	S	S	78.8	77.8	99.0
Tennessee	78.4	71.8	75.1	75.5	49.7	68.9	84.8	64.8	89.4	94.3	86.2
West South Central	82.9	73.0	69.9	93.6	64.9	79.8	67.4	69.8	97.0	90.7	97.0
Arkansas	72.0	69.3	73.1	S	S	63.1	S	61.8	64.7	65.2	104.7
Louisiana	70.0	65.6	56.1	73.6	S	80.3	59.5	72.5	83.4	88.8	91.1
Oklahoma	70.5	67.5	70.2	S	S	60.0	59.4	60.7	76.8	71.1	67.7
Texas	86.8	76.1	69.2	98.4	67.7	83.2	73.4	69.6	99.6	94.1	98.4
Mountain	80.0	71.8	66.6	90.6	68.6	84.2	63.0	65.4	99.5	94.4	91.6
Arizona	79.7	70.0	67.4	89.3	70.0	71.4	73.1	60.3	96.8	74.5	75.4
Colorado	82.9	75.8	74.1	92.7	75.1	84.7	59.9	75.5	92.3	88.5	89.5
Idaho	70.5	53.6	51.2	S	S	53.5	46.3	S	102.2	101.7	104.5
Montana	58.0	56.3	56.5	S	S	52.3	S	S	S	S	S
New Mexico	97.7	88.0	68.1	105.5	67.8	99.1	60.2	62.8	105.4	125.1	118.2
Nevada	84.0	79.7	82.1	S	S	90.4	60.1	54.4	90.0	80.5	130.6
Utah	74.3	68.0	66.9	88.3	64.6	75.6	64.9	66.1	89.1	81.8	86.8
Wyoming	65.0	61.9	S	S	S	S	S	S	S	S	S
Pacific	95.0	84.8	74.8	105.9	78.7	92.7	79.6	75.5	104.6	119.8	107.6
Alaska	69.9	68.7	64.2	S	S	S	S	S	S	S	S
California	100.0	89.9	80.0	114.4	79.7	99.3	83.2	80.5	108.4	127.8	119.5
Hawaii	79.7	79.6	80.9	S	S	88.2	S	69.8	S	S	89.1
Oregon	83.0	72.7	70.4	90.5	56.3	83.5	60.7	63.9	91.2	101.1	77.2
Washington	80.0	72.7	62.4	95.5	83.4	79.7	72.0	72.2	99.8	109.7	80.0
Puerto Rico	62.8	59.7	61.1	S	S	57.3	S	S	S	S	65.6
Other U.S. territories and other areas	86.2	77.4	S	S	S	S	S	S	S	S	110.4

SEH = science, engineering, and health.
NOTES: Because survey sample design does not include geography, reliability of estimates in some states may be poor due to small sample size. Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 75. Doctoral scientists and engineers employed in postdocs, by field of doctorate: 2006

Field	Number	Percent
Total in postdoc ${ }^{\text {a }}$	29,890	100.0
Science	25,400	85.0
Biological, agricultural, and environmental life sciences	15,330	51.3
Agricultural/food sciences	630	2.1
Biochemistry/biophysics	2,480	8.3
Cell/molecular biology	2,880	9.6
Environmental life sciences	310	1.0
Microbiology	1,000	3.3
Zoology	280	0.9
Other biological sciences	7,750	25.9
Computer and information sciences	180	0.6
Mathematics and statistics	1,090	3.6
Physical sciences	5,570	18.6
Astronomy/astrophysics	520	1.7
Chemistry, except biochemistry	2,530	8.5
Earth/atmospheric/ocean sciences	810	2.7
Physics	1,710	5.7
Psychology	2,200	7.4
Social sciences	1,040	3.5
Economics	130	0.4
Political sciences	300	1.0
Sociology	80	0.3
Other social sciences	520	1.7
Engineering	3,520	11.8
Aerospace/aeronautical/astronautical engineering	180	0.6
Chemical engineering	670	2.2
Civil engineering	230	0.8
Electrical/computer engineering	540	1.8
Materials/metallurgical engineering	520	1.7
Mechanical engineering	440	1.5
Other engineering	940	3.1
Health	960	3.2

${ }^{\text {a }}$ A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006).

NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Years since doctorate and number of postdocs		Science							Engineering	Health
	All fields	All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Total population	711,800	561,230	177,420	13,990	33,830	135,210	108,030	92,750	121,520	29,040
None	444,510	326,570	67,340	12,350	25,420	67,210	73,530	80,720	95,420	22,510
1	201,180	172,890	75,810	1,450	6,170	51,140	28,900	9,430	22,650	5,640
2	54,100	50,480	27,940	190	1,810	13,610	4,890	2,040	2,880	750
3 or more	12,010	11,300	6,340	S	440	3,260	710	560	570	150
5 years or less	117,710	88,400	30,450	3,720	4,790	17,420	16,830	15,200	21,880	7,430
None	65,610	45,360	10,020	3,060	2,890	7,170	9,610	12,620	14,600	5,640
1	43,090	35,060	16,040	560	1,470	8,350	6,550	2,080	6,420	1,610
2	8,250	7,360	3,980	100	380	1,790	660	440	710	180
3 or more	770	620	400	S	50	110	S	50	150	S
6-10 years	113,660	86,070	28,730	3,680	4,880	18,800	16,390	13,590	21,740	5,850
None	69,360	47,910	9,500	3,340	3,460	9,340	10,500	11,750	16,920	4,530
1	34,180	28,910	13,750	340	930	7,150	5,210	1,540	4,080	1,200
2	8,740	7,940	4,640	S	430	1,980	650	240	680	120
3 or more	1,380	1,310	840	S	60	320	S	70	60	S
11-15 years	100,960	76,530	25,020	3,340	4,070	17,710	14,940	11,440	19,350	5,080
None	56,980	39,120	7,180	2,880	2,850	7,100	9,470	9,620	14,050	3,820
1	31,270	25,820	11,210	370	670	7,690	4,460	1,420	4,400	1,050
2	10,600	9,600	5,380	90	440	2,380	960	360	810	190
3 or more	2,110	1,990	1,260	S	110	540	S	S	90	S
16-20 years	82,120	65,200	20,180	1,840	3,030	15,730	14,150	10,260	13,630	3,300
None	51,540	37,620	7,260	1,790	2,180	6,890	10,260	9,250	11,330	2,590
1	22,010	19,430	8,380	60	650	6,460	3,150	730	2,010	570
2	6,860	6,500	3,610	S	160	1,920	660	150	250	110
3 or more	1,700	1,650	930	S	S	460	80	140	S	S
21-25 years	76,520	64,260	20,570	940	2,990	13,370	15,340	11,030	9,490	2,770
None	49,580	39,160	7,770	860	2,440	7,400	11,000	9,690	8,200	2,220
1	19,770	18,070	8,240	80	320	4,670	3,580	1,180	1,210	490
2	5,580	5,480	3,530	S	110	1,050	670	130	S	60
3 or more	1,590	1,540	1,030	S	120	260	90	S	50	S
More than 25 years	220,820	180,780	52,460	450	14,080	52,180	30,390	31,220	35,430	4,610
None	151,440	117,400	25,610	420	11,580	29,300	22,690	27,800	30,330	3,710
1	50,850	45,600	18,180	S	2,130	16,830	5,950	2,470	4,530	720
2	14,070	13,590	6,790	S	300	4,490	1,290	730	390	90
3 or more	4,460	4,190	1,870	S	60	1,560	460	230	180	100

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006). Years since doctorate were calculated as academic years since doctorate attainment.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Number of postdocs and primary reason for holding postdoc	All fields	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Total ever holding postdoc	267,290	234,660	110,080	1,640	8,420	68,010	34,500	12,020	26,090	6,530
Reason for first postdoc										
Additional training in field	89,610	79,060	36,760	610	2,760	20,320	15,410	3,200	7,550	2,990
Training out of field	36,380	32,290	17,590	90	850	9,200	2,830	1,730	3,320	780
Work with specific person or place	51,890	44,260	21,390	510	2,040	12,750	4,640	2,930	6,220	1,410
Other employment not available	30,020	23,470	8,640	240	800	9,640	1,940	2,200	6,060	500
Postdoc generally expected for career in field	51,120	48,490	22,790	110	1,690	14,210	8,980	720	1,870	760
Other reason	8,260	7,100	2,920	80	270	1,890	700	1,240	1,070	90
Total with only one postdoc	201,180	172,890	75,810	1,450	6,170	51,140	28,900	9,430	22,650	5,640
Reason for first postdoc										
Additional training in field	70,880	61,530	26,690	520	1,920	16,650	13,010	2,730	6,710	2,650
Training out of field	25,120	21,850	11,310	80	690	6,430	2,140	1,200	2,610	650
Work with specific person or place	36,720	30,260	13,200	460	1,600	8,770	3,740	2,490	5,330	1,140
Other employment not available	20,540	14,720	4,490	210	480	6,430	1,420	1,690	5,380	440
Postdoc generally expected for career in field	42,860	40,510	18,820	110	1,360	11,630	8,050	550	1,650	700
Other reason	5,060	4,020	1,300	50	120	1,240	530	780	980	50
Total with more than one postdoc	66,110	61,780	34,280	190	2,250	16,860	5,600	2,600	3,440	890
Reason for first postdoc										
Additional training in field	18,720	17,540	10,070	80	840	3,670	2,400	480	850	340
Training out of field	11,270	10,430	6,280	S	160	2,770	690	530	710	120
Work with specific person or place	15,170	14,000	8,190	50	440	3,980	900	440	900	270
Other employment not available	9,490	8,750	4,150	S	320	3,220	520	520	680	60
Postdoc generally expected for career in field	8,260	7,980	3,970	S	330	2,580	930	170	220	60
Other reason	3,200	3,070	1,620	S	150	650	170	470	90	S
Reason for second postdoc										
Additional training in field	26,790	24,930	14,090	100	930	6,190	2,920	700	1,390	470
Training out of field	9,580	9,000	5,670	S	190	2,140	580	430	350	230
Work with specific person or place	10,710	9,960	5,810	50	440	2,700	480	470	620	140
Other employment not available	6,030	5,420	2,110	S	290	2,150	340	530	610	S
Postdoc generally expected for career in field	11,110	10,730	5,710	S	370	3,280	1,190	160	320	60
Other reason	1,890	1,740	880	S	S	410	80	300	150	S

NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006).
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 78. Postdoc status of doctoral scientists and engineers, by years since doctorate and broad field of doctorate: 2006

Years since doctorate and postdoc status	$\begin{array}{r} \text { All } \\ \text { fields } \end{array}$	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Total population	711,800	561,230	177,420	13,990	33,830	135,210	108,030	92,750	121,520	29,040
On postdoc in 2006	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
5 Years or less	117,710	88,400	30,450	3,720	4,790	17,420	16,830	15,200	21,880	7,430
On postdoc in 2006	26,670	22,440	13,070	170	1,080	5,110	2,130	890	3,360	870
6-10 Years	113,660	86,070	28,730	3,680	4,880	18,800	16,390	13,590	21,740	5,850
On postdoc in 2006	2,680	2,530	1,950	S	S	430	50	80	100	S
11-15 Years	100,960	76,530	25,020	3,340	4,070	17,710	14,940	11,440	19,350	5,080
On postdoc in 2006	430	340	270	S	S	S	S	S	60	S
More than 15 years	379,460	310,230	93,220	3,240	20,100	81,280	59,880	52,520	58,550	10,680
On postdoc in 2006	110	90	50	S	S	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006). Years since doctorate were calculated as academic years since doctorate attainment.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 79. Doctoral scientists and engineers on postdoctoral appointments, by selected demographic characteristics and broad field of doctorate: 2006

Characteristic	All fields	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
On postdoc in April 2006	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Years since doctorate										
5 or less	26,670	22,440	13,070	170	1,080	5,110	2,130	890	3,360	870
6-10	2,680	2,530	1,950	S	S	430	50	80	100	S
11-15	430	340	270	S	S	S	S	S	60	S
More than 15	110	90	50	S	S	S	S	S	S	S
Sex										
Male	17,790	14,610	8,130	140	830	4,250	830	440	2,790	390
Female	12,100	10,790	7,210	S	260	1,320	1,370	600	730	580
Race/ethnicity										
American Indian/Alaska Native	110	100	S	S	S	S	S	S	S	S
Asian	10,050	7,830	5,170	90	320	1,870	220	160	1,930	290
Black	990	860	500	S	S	130	80	120	70	70
Hispanic	1,170	1,040	670	S	S	140	130	50	110	S
White	17,500	15,500	8,910	80	700	3,390	1,720	700	1,410	580
Other race/ethnicity ${ }^{\text {a }}$	70	70	60	S	S	S	S	S	S	S
Age										
Under 35	18,670	15,870	9,340	170	890	3,650	1,480	330	2,400	400
35-44	9,620	8,200	5,260	S	160	1,780	500	490	990	430
45-75	1,600	1,330	730	S	S	140	210	210	140	130
Citizenship										
U.S. citizen	18,260	16,310	9,830	90	480	2,990	2,070	860	1,340	610
Non-U.S. citizen	11,630	9,090	5,500	90	610	2,570	130	180	2,180	360
Employment sector										
Business/industry	3,780	3,300	1,750	50	90	990	320	90	270	200
Educational institution	23,600	19,950	12,280	100	990	3,920	1,780	890	3,050	600
Government	2,500	2,150	1,300	S	S	660	110	50	200	160
Employment benefits ${ }^{\text {b }}$										
Received health benefits	28,280	24,040	14,620	180	1,070	5,280	1,950	950	3,330	910
Received retirement benefits	15,910	13,480	7,670	150	770	3,350	1,040	500	2,020	410

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}}$ Individuals could receive both health and retirement benefits.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006).

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Extent and type of benefit	All fields	Science							Engineering	Heath
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Total	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Increase subject matter knowledge or expertise	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Great extent	20,900	17,810	10,740	60	810	4,100	1,410	700	2,350	730
Somewhat	8,620	7,220	4,480	120	240	1,310	750	330	1,170	230
Not at all	370	370	120	S	S	160	S	S	S	S
Improve specific research skills or techniques	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Great extent	17,920	15,150	9,440	80	590	3,460	1,150	420	2,130	640
Somewhat	10,830	9,310	5,460	100	410	1,890	930	530	1,270	250
Not at all	1,140	950	430	S	90	220	120	90	130	70
Increase contacts with colleagues in field	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Great extent	13,810	11,950	6,910	90	390	2,770	1,180	600	1,350	520
Somewhat	13,570	11,350	7,020	80	610	2,310	980	360	1,920	300
Not at all	2,500	2,100	1,400	S	90	480	S	80	250	150
Provide opportunities to use specialized equipment	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Great extent	12,710	11,040	7,330	90	100	2,630	690	210	1,330	340
Somewhat	11,110	9,500	6,230	80	310	1,940	730	210	1,270	350
Not at all	6,060	4,870	1,780	S	690	1,000	780	610	920	270
Improve problem-solving skills	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Great extent	12,870	11,000	6,920	60	250	2,430	1,010	330	1,560	300
Somewhat	14,870	12,520	7,390	110	740	2,670	1,130	490	1,850	500
Not at all	2,150	1,880	1,030	S	100	470	60	220	110	160
Enhance your career opportunities	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Great extent	15,620	13,340	8,150	60	480	2,840	1,260	540	1,510	770
Somewhat	12,350	10,440	6,170	90	570	2,300	880	430	1,780	130
Not at all	1,920	1,630	1,010	S	S	430	60	70	230	60
Help in other areas	29,890	25,400	15,330	180	1,090	5,570	2,200	1,040	3,520	960
Great extent	4,700	3,910	2,310	S	150	740	410	270	490	300
Somewhat	12,170	10,360	6,500	60	390	2,150	920	350	1,540	260
Not at all	13,020	11,130	6,530	80	550	2,680	860	420	1,490	400

$S=$ suppressed for reliability or confidentiality.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006).
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE 81. Academic positions held by doctoral scientists and engineers, by broad field of doctorate: 2006
Science

Academic position held	All fields	All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences	Engineering	Health
Total employed in educational institutions	282,780	236,740	83,210	5,910	17,950	41,140	36,250	52,280	30,690	15,350
President, provost, or chancellor	3,200	2,930	690	100	270	420	570	880	150	130
Dean, department head, or chair	29,840	24,130	6,900	510	1,810	3,620	4,090	7,200	3,270	2,440
Research faculty, scientist, associate, or fellow	113,160	94,020	41,770	2,430	6,810	16,080	12,390	14,530	13,080	6,070
Teaching faculty	186,650	155,700	44,830	4,500	14,550	26,750	24,450	40,610	20,460	10,500
Adjunct faculty	16,920	14,430	4,950	80	660	2,030	3,060	3,660	1,520	970
Postdoc (e.g., postdoctoral fellow or associate)	23,530	19,880	12,280	100	960	3,920	1,740	890	3,050	600
Research assistant	1,360	1,140	570	S	S	260	160	110	190	S
Teaching assistant	230	200	140	S	S	S	S	S	S	S
Other position	11,860	10,350	4,320	320	400	1,100	2,510	1,710	770	740

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Numbers are rounded to nearest 10. Detail may not add to total because of rounding. A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006).

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Appendix A. Technical Notes

The Survey of Doctorate Recipients (SDR) gathers information from individuals who have obtained doctoral degrees from U.S. institutions in a science, engineering or health field (SEH). The SDR is a panel study (i.e., a longitudinal survey) that is conducted every 2 years on a nationally representative cohort of SEH research doctorate recipients. These technical notes on the 2006 SDR include information on the target population and sample design, data collection and response rates, data editing, imputation, weighting, reliability of estimates including sampling and nonsampling errors, and changes from previous cycles of the SDR. In addition, this appendix includes standard error tables (tables A-1 to A-81) that provide an estimate of the standard error for each corresponding estimate provided in the detailed statistical table. More thorough discussion of the SDR protocol is provided in the 2006 SDR methodology report (available upon request).

Survey Overview

The primary sponsor of the SDR is the National Science Foundation, Division of Science Resources Statistics (SRS). The National Institutes of Health also provide funding for the survey. The SDR is designed to complement two other surveys of scientists and engineers conducted by SRS, the National Survey of College Graduates (NSCG) and the National Survey of Recent College Graduates (NSRCG).[1] The surveys are collectively known as the Scientists and Engineers Statistical Data System (SESTAT, http://www.nsf.gov/statistics/ sestat/). The three surveys are closely coordinated and share the same reference date and nearly identical instruments. In addition, the three surveys are combined into a merged database that provides a comprehensive picture of the number and characteristics of individuals with bachelor's level or higher education and/or employment in science, engineering, or health fields in the United States. Additional data on education and demographic information in the SDR come from the Survey of Earned Doctorates (SED), an annual census of research doctorates earned in the United States that began in 1957-58 (SED, http://www.nsf.gov/statistics/doctorates/). The SED provided a sampling frame for establishing the SDR in 1973 and continues to provide a sampling frame to replenish the SDR panel with new doctorate recipients each survey cycle.

Target Population and Sample Design

The 2006 SDR target population consisted of individuals who:

- earned a research doctoral degree from a U.S. college or university in a science, engineering, or health field[2]
- indicated in the SED a plan to reside in the United States after degree award
- were less than 76 years of age on 1 April 2006
- were living in the United States in a noninstitutionalized setting during the week of 1 April 2006

As in previous cycles, the 2006 SDR sampling frame was constructed from two separate listings: the existing 2003 SDR cohort and a new cohort frame. The cohorts are defined by the year of receipt of the first U.S.-granted SEH doctoral degree.[3] The existing cohort frame represents individuals who received their science, engineering, or health doctorate before 1 July 2002; the new cohort frame represents individuals who received their science, engineering, or health doctorate between 1 July 2002 and 30 June 2005.

The cases within the existing and new cohort frames were analyzed individually for SDR eligibility requirements. Persons who did not meet the age criteria or who were known to be deceased, terminally ill, incapacitated, or permanently institutionalized in a correctional or health care facility were dropped from the sampling frames. Sample persons who were non-U.S. citizens and were known to be residing outside the United States or one of its territories during at least two prior consecutive survey cycles were also eliminated from the existing frame. After ineligible cases were removed from consideration, the remaining cases
from the existing and new cohort frames were used to create the sampling frame for the 2006 SDR. In total, there were 89,139 eligible cases in the 2006 SDR sampling frame, 49,703 new cohort cases and 39,436 existing cohort cases.

The 2006 SDR sample design was basically the same as the 2003 SDR design. The 2006 SDR sample consisted of 42,955 cases. The frame was stratified into 164 strata by three variables: demographic group, degree field, and sex. The sample was then selected from each stratum systematically. The goal of the 2006 SDR sample stratification design was to create strata that conformed as closely as possible to the reporting domains used by analysts and for which the associated subpopulations were large enough to be suitable for separate estimation and reporting. The demographic group variable included 10 categories defined by race/ethnicity, disability status, and citizenship at birth. The classification of frame cases into these categories was done in a hierarchical manner to ensure higher selection probability for rarer population groups.

Prior to 2003, a 15-category degree field variable was used to stratify all demographic groups, resulting in a large number of strata with very small populations. NSF decided that an alternative degree field variable was needed to stratify the smaller demographic groups. Beginning in 2003, only the three largest demographic groups (U.S.-citizen-at-birth, non-disabled, non-Hispanic whites; non-U.S.-citizen-at-birth, non-Hispanic whites regardless of disability status; and non-U.S.-citizen-at-birth, non-Hispanic Asians regardless of disability status) were stratified by the 15 -category degree field variable. All other demographic groups were stratified by a 7-category degree field variable except for non-Hispanic American Indians (including Alaskan Natives) regardless of citizenship-at-birth and disability status, and non-Hispanic Pacific Islanders (including Native Hawaiians) regardless of citizenship-at-birth and disability status who were stratified only by sex. Thus, the 2006 SDR design featured a total of 164 strata defined by a revised demographic group variable, two degree-field variables, and sex.

The 2006 SDR sample allocation strategy consisted of three main components: (1) allocate a minimum sample size for the smallest strata through a supplemental stratum allocation; (2) allocate extra sample for specific demographic group-by-sex domains through a supplemental domain allocation; and (3) allocate the remaining sample proportionately across all strata. The final sample allocation was therefore based on the sum of a proportional allocation across all strata, a domain-specific supplement allocated proportionately across strata in that domain, and a stratum-specific supplement added to obtain the minimum stratum size.

The 2006 SDR sample selection was carried out independently for each stratum and cohortsubstratum. For the existing cohort strata, the past practice of selecting the sample with probability proportional to size continued, where the measure of size was the base weight associated with the previous survey cycle. For each stratum, the sampling algorithm started by identifying and removing self-representing cases (i.e., those with a base weight $=1$) through an iterative procedure. Next, the non-self-representing cases (i.e., those with a base weight>1) within each stratum were sorted by citizenship, disability status, Doctorate Records File degree field, and year of doctoral degree award. Finally, the balance of the sample (i.e., the total allocation minus the number of self-representing cases) was selected from each stratum systematically with probability proportional to size.

The new cohort sample was selected using the same algorithm used to select the existing cohort sample. However, because the base weight for every case in the new cohort frame was identical, each stratum sample from the new cohort was actually an equal-probability or self-weighting sample. Thus, the 2006 SDR sample of 42,955 consisted of 38,027 cases from the existing cohort frame and 4,928 cases from the new cohort frame. The overall sampling rate was about 1 in $18(5.5 \%)$. However, sampling rates varied considerably across the strata.

Data Collection and Response Rates

Data collection for the 2006 SDR used three protocols. Each protocol had a different initial mode of data capture based primarily on the existing cohort's prior indication of mode preference: self-administered paper questionnaire (SAQ), computer-assisted telephone interview (CATI), and self-administered online questionnaire (Web). After the initial contact, each protocol included sequential contacts by postal mail, telephone, and e-mail and ran in parallel throughout the data collection period. In addition, sample members were encouraged to switch to any other mode for their convenience in providing their response.[4]

SAQ. The protocol for those starting in the SAQ mode (37% of sample members) was as follows: sample members first received an advance notification letter from NSF to acquaint them with the survey. The first questionnaire mailing occurred a week later, followed by a thank you/reminder postcard the following week. Approximately seven weeks after the first questionnaire mailing, the sample members who had not returned a completed questionnaire (by any mode) were sent a second questionnaire by U.S. priority mail. Five weeks later, any cases still not responding received a prompting notice via e-mail to verify receipt of the paper form and encourage cooperation. Telephone follow-up calls began three weeks later for all outstanding mail-start mode nonrespondents and requested participation, preferably by the CATI mode.

CATI. The protocol for those starting in the CATI mode (18% of sample members) was as follows: sample members first received an advance notification letter from NSF to notify them about the survey. One week later, telephone contacting and interviewing began. Approximately seven weeks later, sample members who had not yet responded were sent an e-mail prompt to solicit survey participation in any mode. Four weeks later, any cases still not responding received a first questionnaire mailing sent via U.S. mail, followed by a thank you/reminder postcard one week later. Seven weeks after the first questionnaire mailing, a second questionnaire was mailed to the remaining nonrespondents.

Web. The protocol for those starting in the Web mode (45% of sample members) was as follows: sample members first received a survey notification letter via U.S. mail and e-mail. Three weeks later, nonrespondents were sent a follow-up letter via U.S. mail and e-mail. Three weeks later, any cases still not responding received a prompting telephone call to verify receipt of the Web-survey access information and encourage cooperation. Telephone follow-up calls to complete the CATI for all Web-start mode nonrespondents began four weeks later. Six weeks later, any cases still not responding received a first questionnaire mailing sent via U.S. mail, followed by a thank you/reminder postcard one week later. Seven weeks after the first questionnaire mailing, a second questionnaire was mailed to the remaining nonrespondents.

At the very end of the field period, an additional notice to gain cooperation was sent via U.S. mail and e-mail to all remaining nonrespondents regardless of their initial start-mode protocol.

Quality assurance procedures were in place at each step (address updating, printing, package assembly and mailing, questionnaire receipt, data entry, coding, CATI, and post data collection processing). Active data collection ended in December 2006. The telephone contact and data entry processes ended on 14 December 2006. However, the Web-survey access remained available through January 2007 to capture any last-minute responses. Overall, 32% of the responses were SAQ, 21% were CATI, and 47% were Web-surveys, with approximately 25% of the respondents choosing to respond in a mode other than their initial start mode.

Extensive locating and follow-up was conducted in order to find and obtain responses from the sample members. The overall unweighted response rate was 77.9%; the weighted response rate was 78.3%. The 2006 SDR unweighted and weighted response rates are comparable to the response rates obtained in past survey cycles. Lower response rates
generally occurred among groups of non-U.S. citizens (weighted response rate $=68.2 \%$) and among persons with missing demographic data (weighted response rate $=48.4 \%$). Missing demographic data typically indicated incomplete records from the SED that resulted in more difficulty locating these cases to complete the survey. Prior experience has shown that if sample members are located, they generally complete the survey. Individuals who could not be located accounted for a majority of nonresponse cases (62.4\%).

Data Editing and Coding

Complete case data were captured and edited under the three separate data collection modes for the 2006 SDR. A computer assisted data-entry system was used to process the SAQ paper forms. In contrast, the CATI system, including an additional CATI instrument used to collect critical-item follow-up data, and the Web survey had internal editing controls. Mail questionnaire data and Web-based returns were reviewed for any missing critical items (working status, job code, or resident status in United States). Telephone callbacks were initiated to obtain this information, in order to consider the response complete. All completed CATI responses included critical items. After receipt of this information, data from the three separate modes were merged into a single database for all subsequent coding, editing, and cleaning.

Following established SESTAT guidelines, staff were trained in conducting a standardized review and coding of occupation and education information, "Other/Specify" verbatim responses, state and country geographical information, and postsecondary institution information. For standardized coding of occupation, the respondent's occupational data were reviewed along with other work-related data from the questionnaire by specially trained coders to correct known respondent self-reporting problems to obtain the best occupation codes. The assignment of an education code for a newly earned degree was based solely on the verbatim response for degree field.

I mputation of Missing Data

Item nonresponse for key employment items, such as employment status, sector of employment, and primary work activity, ranged from 0.0% to 2.2%. Nonresponse to a few questions deemed somewhat sensitive, such as salary or earned income, were between 8.2% and 12.2%. Personal demographic data, such as marital status, citizenship, and race/ethnicity, had item nonresponse rates ranging from 0.0% to 3.6%. Item nonresponse was imputed using logical imputation and hot deck imputation methods.

For the most part, logical imputation was accomplished as part of editing. In the editing phase, the answer to a question with missing data was sometimes determined by the answer to another question. In some circumstances, editing procedures found inconsistent data that were blanked out and therefore subject to statistical imputation as well. During sample frame building for the SDR, some demographic frame variables, such as race or ethnicity, that were found to be missing for sample members were imputed at the frame construction stage using additional information on the sampling frame.

The 2006 SDR primary method for statistical imputation was hot-deck imputation. Almost all SDR variables were subjected to hot-deck imputation, where each variable had its own class and sort variables structured by a multiple regression analysis. However, imputation was not performed on critical items (which must be provided for a case to be considered complete) and text variables. For some variables, there was no set of class and sort variables that were reliably related to or suitable for predicting the missing value. In these instances consistency was better achieved outside of the hot deck procedures using random imputation.

Weights

To enable weighted analyses of the 2006 SDR data, a final weight was calculated for every person in the sample. In general, a final weight approximates the number of persons in the population of recipients of U.S. doctorates that a sampled person represents. The primary
purpose of the weights is to adjust the statistical estimates for potential bias due to unequal selection probabilities and nonresponse. The first step of the weighting process calculated a base weight for all cases selected into the 2006 SDR sample. The base weight accounts for the sample design, and it is defined as the reciprocal of the probability of selection under the sample design. In the next step, an adjustment for nonresponse was performed on completed cases to account for the sample cases that did not complete the survey. Nonresponse-adjusted weights were assigned to both respondents and known ineligible cases (i.e., cases who were deceased, institutionalized, over 75 years of age, or living abroad during the survey reference period), but eligible nonrespondents and cases with unknown eligibility received a weight of zero. The total weight carried by unknown-eligibility cases was distributed to respondents assuming the same eligibility rate as observed among the respondents. Thus the sum of weights equals the frame size.

Reliability of Estimates

Because the estimates produced from the SDR are based on a probability sample, they may vary from those that would have been obtained if all members of the target population had been surveyed using the same data-collection procedures. Two types of error are possible when population estimates are derived from a sample survey: sampling error and nonsampling error. By looking at these errors, the accuracy and precision of the survey estimates can be assessed for reliability in relation to sampling error and for bias in relation to nonsampling error.

Sampling Errors

Sampling error is the variation that occurs by chance because a sample, rather than the entire population, is surveyed. The particular sample that was used to estimate the 2006 population of science, engineering, and health doctorate recipients in the United States is one of a large number of samples that could have been selected using the same sample design and sample size. Estimates based on each of these samples would be apt to vary, and such random variation across all possible samples is called the sampling error. Sampling error is measured by the variance or standard error of the survey estimate. The 2006 SDR sample is a systematic sample selected independently from each sampling stratum. The successive difference replication method (SUD) was used to estimate the sampling errors. The theoretical basis for the SUD is described in Wolter (1984) and in Fay and Train (1995). As with any replication method, successive differences replication involves constructing a number of subsamples (replicates) from the full sample and computing the statistics of interest for each replicate. The mean square error of the replicate estimates around their corresponding full sample estimate provides an estimate of the sampling variance of the statistic of interest.

Standard Error Tables

Each statistical data table included in this report has a corresponding standard error table included in this appendix based on the method described above. For example, table A-1 is the standard error table that corresponds to table 1. The standard error of an estimate can be used to construct a confidence interval for the estimate. To construct a 95% confidence interval about an estimate, the corresponding standard error of the estimate is multiplied by a z-score of 1.96 (i.e., the reliability coefficient) and then added to the estimate to establish the upper bound of the confidence interval and then subtracted from the estimate to establish the lower bound of the confidence interval.

Nonsampling Errors

In addition to sampling error, survey estimates are subject to nonsampling error, which can arise at many points in the survey process. Sources of nonsampling error include (1) nonresponse error, which arises when the characteristics of respondents differ systematically from nonrespondents; (2) measurement error, which arises when the variables of interest cannot be precisely measured; (3) coverage error, which arises when some members of the
target population are excluded from the frame and thus do not have a chance to be selected for the sample; (4) respondent error, which occurs when respondents provide incorrect data; and (5) processing error, which can arise at the point of data editing, coding, or data entry. The analyst should be aware of potential nonsampling errors, but these errors are much harder to quantify than sampling errors. As noted previously, quality assurance procedures are included throughout the various stages of data collection and data processing to reduce possibilities for nonsampling error.

Changes in the Survey

Caution should be exercised when making comparisons with previous SDR results. In all previous cycles of the SDR, the new cohort consisted of graduates from the two academic years immediately preceding the survey year. However, in 2006, data were collected from graduates in the three previous academic years.

Before 2003, data on employed doctorate recipients were presented in only two categories: by employment in an S\&E occupation and by employment in a non-S\&E occupation. In 2003 a third category, S\&E-related occupations, was added. S\&E-related occupations include health-related occupations, S\&E managers, S\&E precollege teachers, and S\&E technicians and technologists.

The 2006 SDR maintained the questionnaire design changes that were implemented in 1993 (for the survey questionnaire, see appendix C). The questionnaire comprises a large set of core data items that are retained in each survey round to enable trend comparisons, and several sets of module questions asked intermittently on special topics of interest. In the 2006 SDR, the questionnaire included a module on history of postdoctoral appointments, awarded primarily for gaining additional education and training in research, as a follow-up to a similar module included in the 1995 SDR. A module on international collaboration among doctorate recipients also was part of the 2006 questionnaire.

In addition to the postdoctoral appointment module, new questions were added to request the current job title among those working during the reference period and the last job title held among those not working during the reference period. A question on overall job satisfaction and a question regarding academic position among those working at a postsecondary academic institution, both added in 2003, were retained in 2006. A special module on publication and patenting activities during the past 2-year period, first introduced in 1995 and fielded in 2001 and 2003, was dropped from the questionnaire in 2006. Also dropped from the 2006 questionnaire were questions asked of foreign-born doctorate recipients in the 2003 SDR to obtain information about immigration.

Definitions and Explanations

Employer location. Survey question A8 includes location of the principal employer, and data were based primarily on responses to this question. Individuals not reporting place of employment were classified by their last mailing address.

Field of doctorate. The doctoral field is as specified by the respondent in the SED at the time of degree conferral. These codes were subsequently recoded to the field of study codes used in SESTAT questionnaires. (See appendix table B-1 for field-of-study codes.)

Full time and part time employment. Full time (working 35 hours or more per week) and part time (working less than 35 hours per week) employment status is for principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job, but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when no distinction was made between the principal job and other jobs held by the individual.

Involuntarily out-of-field rate. The involuntarily out-of-field rate is the percentage of employed individuals who reported working part time exclusively because a suitable job was
not available and/or reported working in an area not related to the first doctoral degree (in their principal job), at least partially because a job in the doctoral field was not available.

Labor force participation rate. The labor force participation rate (R_{LF}) is the ratio $(\mathrm{E}+\mathrm{U})$ / P , where E (employed) + U (unemployed; those not-employed persons actively seeking work) $=$ the total labor force, and $\mathrm{P}=$ population, defined as all science, engineering, and health doctorate holders less than 76 years of age who were residing in the United States during the week of 1 April 2006 and who earned their doctorates from U.S. institutions.

Non-U.S. citizen, temporary resident. This citizenship status category does not include individuals who at the time they received their doctorate reported plans to leave the United States and thus were excluded from the sampling frame.

Occupation data. These data were derived from responses to several questions on the kind of work primarily performed by the respondent. The occupational classification of the respondent was based on his/her principal job (including job title) held during the reference week-or last job held, if not employed in the reference week (survey questions A17/A18 or A5/A6). Also used in the occupational classification was a respondent-selected job code (survey question A19 or A7). (See appendix table B-2 for the list of occupations.)

Race/ethnicity. American Indian/Alaska Native, Asian, black, Native Hawaiian/Other Pacific Islander, white, and persons reporting more than one race refer to non-Hispanic individuals only. These race/ethnicity data are from prior rounds of the SDR and the SED. The most recently reported race/ethnicity data were given precedence.

Salary. Median annual salaries are reported for the principal job, are rounded to the nearest $\$ 100$, and are computed for full-time employed scientists and engineers. For individuals employed by educational institutions, no accommodation was made to convert academic-year salaries to calendar-year salaries. Users are advised that due to changes in the salary question after 1993, salary data for 1995-2006 are not strictly comparable with 1993 salary data.

Sector of employment. "Employment sector" is a derived variable based on responses to survey questions A11 and A13. In the detailed tables, the category "4-year educational institutions" includes 4-year colleges or universities, medical schools (including universityaffiliated hospitals or medical centers), and university-affiliated research institutions. "Other educational institutions" include 2 -year colleges, community colleges, or technical institutes and other precollege institutions. "Private-for-profit" includes those self-employed in an incorporated business. "Self-employed" includes those self-employed or a business owner in a non-incorporated business.

Unemployment rate. The unemployment rate $\left(\mathrm{R}_{\mathrm{u}}\right)$ is the ratio $\mathrm{U} /(\mathrm{E}+\mathrm{U})$, where $\mathrm{U}=$ unemployed (those not-employed persons actively seeking work), and E (employed) $+\mathrm{U}=$ the total labor force.

Changes in the Detailed Statistical Tables

The 2006 SDR report adds nine tables to the complement of tables provided in the 2003 SDR. Six of these report data from the 2006 SDR questionnaire module on temporary postdoctoral appointments awarded primarily for gaining additional education and training in research. The remaining three tables provide data about the population of doctoral scientists and engineers with disabilities. The rest of the changes to the 2006 report were made to labels and headers of existing tables. Tables for the 2006 SDR report retain the changes made in the 2003 SDR that provided for more detailed field-of-doctorate and occupation classifications than in tables in earlier survey reports.

References

Fay RE, Train GF. 1995. Aspects of survey and model-based postcensal estimation of income and poverty characteristics for states and counties. ASA Proceedings of the Section on Government Statistics: 154-159.

Wolter K. 1984. An investigation of some estimators of variance for systematic sampling. Journal of the American Statistical Association 79(388): 781-790.

Notes

[1] More detailed information on the NSCG is available at http://www.nsf.gov/statistics/ srvygrads/ and on the NSRCG at http://www.nsf.gov/statistics/srvyrecentgrads/.
[2] See appendix table B-1 for science, engineering, and health fields included in the 2006 SDR sampling frame.
[3] The SDR frame is based on the first U.S. doctorate earned in a science, engineering, or health (SEH) field. Prior to 2003, recipients of two doctorates whose first degree was in a non-SEH field were not included in the SDR frame, even if their second doctorate was in a SEH field. Based on information collected annually by the Survey of Earned Doctorates on the number and characteristics of those earning two doctorates, this exclusion resulted in a slight undercoverage bias. Between 1983 and 2000, for example, the total number of double doctorate recipients with a non-SEH first doctorate and a SEH second doctorate was 154 , representing 0.046% of the total number of SEH doctorates awarded in that period. Starting in 2003, the new cohort frame included all SEH doctorate recipients except those who earned an SEH doctorate in a prior year.
[4] For more complete details regarding the 2006 SDR mode assignments and data collection protocols, see "2006 Survey of Doctorate Recipients Mode Assignment Analysis Report," Grigorian and Hoffer, 2007.

Standard Error Tables

Table For recipients of science, engineering, or health (SEH) doctorates: 2006
by field of doctorate and employment status

A-1
A-2
by disability status

For employed recipients of SEH doctorates: 2006
by field of doctorate

A-8
A-9
A-10
A-11
A-12
A-13 by employment sector and sex

A-14
A-15

For SEH doctorate recipients by occupation

all recipients
by employment status
total
by sex
by race/ethnicity
by selected employment characteristics
by sex
by race/ethnicity
by disability status
employed as postdocs
employed recipients
by race/ethnicity and sex
non-Hispanic minorities, by race/ethnicity and sex
by citizenship status
by age
by years since doctorate
by employment sector
by employment sector and sex
by employment sector and race/ethnicity
by primary or secondary work activity
by employer location
selected demographic characteristics

For median annual salaries of full-time employed SEH doctorate recipients: 2006 by field of doctorate
A-50 by race/ethnicity and sex

A-51
A-52
A-53
A-54
A-55
A-56
A-57
A-58

A-59
A-60
A-61
A-62
A-63
A-64
by
A-65
A-66
A-67
A-68
A-69
A-70
A-71
A-72
A-73

For postdoctoral appointments, by field of SEH doctorate: 2006
A-75
A-76
A-77
A-78
A-79
A-80
total
postdocs ever held, by years since doctorate
primary reason for holding postdoc, by number of postdocs
postdoc status, by years since doctorate
total on postdocs, by selected demographic characteristics
extent to which current postdoc benefitted doctoral scientists and engineers

For academic employment positions in postsecondary institutions
A-81 all positions, by field of doctorate

TABLE A-1. Standard errors for doctoral scientists and engineers, by field of doctorate and employment status: 2006

Field	Total	Employed			Unemployed	Retired	Not employed, not seeking work
		All	Full time	Part time			
All fields	1,320	1,640	1,840	1,310	430	1,170	530
Science	1,120	1,570	1,650	1,120	380	1,050	470
Biological, agricultural, and environmental life sciences	520	780	860	530	230	550	260
Agricultural/food sciences	320	350	350	190	70	200	60
Biochemistry/biophysics	380	430	430	180	110	210	110
Cell/molecular biology	350	370	380	170	90	120	120
Environmental life sciences	200	230	240	110	60	130	S
Microbiology	330	340	350	130	90	150	70
Zoology	260	280	320	170	50	170	60
Other biological sciences	680	730	770	390	140	360	180
Computer and information sciences	250	270	260	110	60	70	40
Mathematics and statistics	310	400	420	260	110	260	80
Physical sciences	590	760	820	440	250	530	220
Astronomy/astrophysics	160	170	170	60	S	90	60
Chemistry, except biochemistry	420	600	610	320	190	420	170
Earth/atmospheric/ocean sciences	210	270	290	180	80	200	80
Physics	350	460	460	230	130	300	100
Psychology	400	600	740	650	170	430	220
Social sciences	500	630	670	450	170	460	180
Economics	320	370	380	230	110	250	80
Political sciences	340	360	370	260	60	220	100
Sociology	270	290	310	180	40	190	70
Other social sciences	370	480	500	280	90	270	110
Engineering	610	740	820	440	190	490	210
Aerospace/aeronautical/astronautical engineering	230	230	240	130	S	120	50
Chemical engineering	380	370	390	180	110	210	80
Civil engineering	320	310	320	140	40	160	40
Electrical/computer engineering	340	370	410	240	80	230	90
Materials/metallurgical engineering	360	340	330	120	60	160	90
Mechanical engineering	330	330	340	170	90	180	70
Other engineering	450	480	470	190	100	270	100
Health	290	360	420	270	80	210	110

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Full time and part time employment status is for principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job. Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-2. Standard errors for doctoral scientists and engineers, by broad field of doctorate, employment status, and sex: 2006

Employment status and field	Total	Male	Female
All fields	1,320	1,060	630
Employed full time	1,840	1,490	1,050
Employed part time	1,310	980	810
Unemployed	430	390	250
Retired	1,170	1,030	600
Not employed, not seeking work	530	270	430
Science	1,120	890	580
Employed full time	1,650	1,250	1,040
Employed part time	1,120	850	740
Unemployed	380	360	240
Retired	1,050	910	560
Not employed, not seeking work	470	230	430
Biological, agricultural, and environmental life sciences	520	430	330
Employed full time	860	670	520
Employed part time	530	390	370
Unemployed	230	200	160
Retired	550	450	280
Not employed, not seeking work	260	130	240
Computer and information sciences	250	220	80
Employed full time	260	230	100
Employed part time	110	100	70
Unemployed	60	60	S
Retired	70	50	50
Not employed, not seeking work	40	S	S
Mathematics and statistics	310	270	140
Employed full time	420	380	190
Employed part time	260	230	120
Unemployed	110	100	S
Retired	260	260	100
Not employed, not seeking work	80	50	70
Physical sciences	590	530	200
Employed full time	820	760	370
Employed part time	440	390	190
Unemployed	250	230	120
Retired	530	520	170
Not employed, not seeking work	220	140	180
Psychology	400	290	280
Employed full time	740	490	600
Employed part time	650	420	510
Unemployed	170	120	130
Retired	430	300	300
Not employed, not seeking work	220	70	210
Social sciences	500	400	270
Employed full time	670	500	430
Employed part time	450	390	280
Unemployed	170	150	70
Retired	460	410	220
Not employed, not seeking work	180	100	160
Engineering	610	590	160
Employed full time	820	800	260
Employed part time	440	440	110
Unemployed	190	180	70
Retired	490	470	100

TABLE A-2. Standard errors for doctoral scientists and engineers, by broad field of doctorate, employment status, and sex: 2006

Employment status and field	Total	Male	Female
Not employed, not seeking work	210	150	140
Health	290	180	210
Employed full time	420	250	300
Employed part time	270	160	210
Unemployed	80	S	70
Retired	210	140	150
Not employed, not seeking work	110	50	110

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Full time and part time employment status is for principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job. Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-3. Standard errors for doctoral scientists and engineers, by broad field of doctorate, employment status, and race/ethnicity: 2006

Employment status and field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{\text {a }}$
All fields	1,320	140	790	300	310	940	110
Employed full time	1,840	160	820	300	300	1,530	90
Employed part time	1,310	110	360	180	170	1,210	40
Unemployed	430	S	170	80	60	400	S
Retired	1,170	110	400	130	130	1,110	50
Not employed, not seeking work	530	30	210	80	100	460	40
Science	1,120	140	610	240	270	850	110
Employed full time	1,650	150	640	270	270	1,440	90
Employed part time	1,120	100	300	160	170	1,050	40
Unemployed	380	S	150	70	50	370	S
Retired	1,050	110	320	130	110	1,000	50
Not employed, not seeking work	470	S	160	60	80	450	S
Biological, agricultural, and environmental life sciences	520	100	330	130	160	470	80
Employed full time	860	110	320	150	180	770	70
Employed part time	530	50	160	70	70	480	S
Unemployed	230	S	100	S	30	210	S
Retired	550	50	160	40	60	530	40
Not employed, not seeking work	260	S	130	40	50	240	S
Computer and information sciences	250	S	170	40	50	180	S
Employed full time	260	S	170	40	50	190	S
Employed part time	110	S	50	S	S	100	S
Unemployed	60	S	S	S	S	50	S
Retired	70	S	40	S	S	60	S
Not employed, not seeking work	40	S	S	S	S	40	S
Mathematics and statistics	310	50	140	70	90	250	S
Employed full time	420	40	180	70	100	370	S
Employed part time	260	S	130	40	40	230	S
Unemployed	110	S	S	S	S	100	S
Retired	260	S	80	S	40	250	S
Not employed, not seeking work	80	S	40	S	S	70	S
Physical sciences	590	80	300	110	120	410	50
Employed full time	820	80	360	110	130	700	50
Employed part time	440	S	170	70	70	450	S
Unemployed	250	S	110	30	S	230	S
Retired	530	60	200	40	60	470	S
Not employed, not seeking work	220	S	80	S	40	190	S
Psychology	400	90	120	100	120	350	60
Employed full time	740	90	140	150	140	710	60
Employed part time	650	60	80	110	120	650	S
Unemployed	170	S	40	50	S	160	S
Retired	430	50	40	70	60	420	S
Not employed, not seeking work	220	S	60	40	50	210	S
Social sciences	500	100	190	140	100	400	60
Employed full time	670	90	200	160	120	600	40
Employed part time	450	60	110	90	60	430	S
Unemployed	170	S	40	40	S	170	S
Retired	460	60	90	80	60	460	S
Not employed, not seeking work	180	S	50	40	S	180	S
Engineering	610	80	430	90	120	370	50
Employed full time	820	90	510	100	110	610	30
Employed part time	440	S	210	60	40	370	S
Unemployed	190	S	110	S	S	150	S
Retired	490	S	230	S	70	470	S

TABLE A-3. Standard errors for doctoral scientists and engineers, by broad field of doctorate, employment status, and race/ethnicity: 2006

Employment status and field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity
Not employed, not seeking work	210	S	140	S	60	130	S
Heath	290	50	150	90	50	230	S
Employed full time	420	50	180	100	60	330	S
Employed part time	270	S	80	70	40	250	S
Unemployed	80	S	S	S	S	70	S
Retired	210	S	60	S	S	200	S
Not employed, not seeking work	110	S	S	50	S	110	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.

${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Full time and part time employment status is for principal job only, not for all jobs held in the labor force. For, example, an individual could work part time in his/her principal job but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job. Standard errors are rounded up to nearest 10 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-4. Standard errors for selected employment characteristics of doctoral scientists and engineers, by field of doctorate: 2006
(Rate per 100)

Field	Unemployment rate	Involuntarily out-of-field rate	Labor force participation rate
All fields	0.1	0.1	0.2
Science	0.1	0.1	0.2
Biological, agricultural, and environmental life sciences	0.1	0.2	0.3
Agricultural/food sciences	0.4	0.7	1.0
Biochemistry/biophysics	0.4	0.6	0.8
Cell/molecular biology	0.5	0.5	0.9
Environmental life sciences	0.8	0.8	1.7
Microbiology	0.7	0.7	1.2
Zoology	0.4	1.1	1.4
Other biological sciences	0.2	0.3	0.5
Computer and information sciences	0.4	0.5	0.5
Mathematics and statistics	0.3	0.5	0.8
Physical sciences	0.2	0.4	0.4
Astronomy/astrophysics	S	1.5	2.0
Chemistry, except biochemistry	0.3	0.4	0.6
Earth/atmospheric/ocean sciences	0.4	0.7	1.0
Physics	0.3	0.9	0.8
Psychology	0.2	0.2	0.4
Social sciences	0.2	0.3	0.5
Economics	0.5	0.4	1.0
Political sciences	0.3	0.6	1.1
Sociology	0.3	0.7	1.1
Other social sciences	0.3	0.7	1.0
Engineering	0.2	0.3	0.4
Aerospace/aeronautical/astronautical engineering	S	1.1	2.2
Chemical engineering	0.7	0.8	1.3
Civil engineering	0.4	0.9	1.4
Electrical/computer engineering	0.2	0.4	0.7
Materials/metallurgical engineering	0.5	0.9	1.3
Mechanical engineering	0.6	0.8	1.1
Other engineering	0.4	0.6	1.1
Health	0.3	0.2	0.8

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Labor force is defined as those employed (E) plus those unemployed and seeking work (U). Population (P) is defined as all science, engineering, and health doctorate holders under age 76, residing in the United States during the week of 1 April 2006, who earned doctorates from U.S. institutions. Involuntarily-out-of field rate is the percentage of employed individuals who reported working part time exclusively because suitable full-time work was not available and/or reported working in an area not related to the first doctoral degree (in their principal job) at least partially because suitable work in the field was not available. Unemployment rate $\left(\mathrm{R}_{\mathrm{U}}\right)=\mathrm{U} /(\mathrm{E}+\mathrm{U})$. Labor force participation rate $\left(R_{L F}\right)=(E+U) / P$.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-5. Standard errors for doctoral scientists and engineers, by field of doctorate and sex: 2006

Field	Total	Male	Female	Total	Male	Female
	Number			Percent		
All fields	1,320	1,060	630	-	0.1	0.1
Science	1,120	890	580	-	0.1	0.1
Biological, agricultural, and environmental life sciences	520	430	330	-	0.2	0.2
Agricultural/food sciences	320	290	120	-	0.5	0.5
Biochemistry/biophysics	380	300	260	-	0.7	0.7
Cell/molecular biology	350	280	200	-	0.9	0.9
Environmental life sciences	200	170	100	-	1.2	1.2
Microbiology	330	250	200	-	1.2	1.2
Zoology	260	230	130	-	0.9	0.9
Other biological sciences	680	500	400	-	0.4	0.4
Computer and information sciences	250	220	80	-	0.5	0.5
Mathematics and statistics	310	270	140	-	0.4	0.4
Physical sciences	590	530	200	-	0.1	0.1
Astronomy/astrophysics	160	150	70	-	1.3	1.3
Chemistry, except biochemistry	420	370	180	-	0.2	0.2
Earth/atmospheric/ocean sciences	210	180	90	-	0.4	0.4
Physics	350	330	100	-	0.2	0.2
Psychology	400	290	280	-	0.2	0.2
Social sciences	500	400	270	-	0.2	0.2
Economics	320	280	130	-	0.4	0.4
Political sciences	340	280	170	-	0.7	0.7
Sociology	270	210	180	-	0.8	0.8
Other social sciences	370	320	220	-	0.7	0.7
Engineering	610	590	160	-	0.1	0.1
Aerospace/aeronautical/astronautical engineering	230	220	80	-	1.3	1.3
Chemical engineering	380	330	140	-	0.7	0.7
Civil engineering	320	290	90	-	0.7	0.7
Electrical/computer engineering	340	320	90	-	0.3	0.3
Materials/metallurgical engineering	360	340	130	-	1.0	1.0
Mechanical engineering	330	300	110	-	0.6	0.6
Other engineering	450	400	160	-	0.5	0.5
Health	290	180	210	-	0.4	0.4

- = no value; standard errors are not calculated for proportions of 100\%.

NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-6. Standard errors for doctoral scientists and engineers, by field of doctorate and race/ethnicity: 2006

Field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	
	Number						
All fields							
Science	1,120	140	610	240	270	850	110
Biological, agricultural, and environmental life sciences	520	100	330	130	160	470	80
Agricultural/food sciences	320	60	160	100	80	240	S
Biochemistry/biophysics	380	60	250	80	80	330	S
Cell/molecular biology	350	S	210	70	70	290	S
Environmental life sciences	200	30	90	40	40	160	S
Microbiology	330	S	170	50	60	260	40
Zoology	260	40	90	60	60	230	S
Other biological sciences	680	80	310	110	130	570	70
Computer and information sciences	250	S	170	40	50	180	S
Mathematics and statistics	310	50	140	70	90	250	S
Physical sciences	590	80	300	110	120	410	50
Astronomy/astrophysics	160	40	80	S	30	160	S
Chemistry, except biochemistry	420	70	210	100	100	300	40
Earth/atmospheric/ocean sciences	210	50	90	40	60	160	S
Physics	350	50	180	60	70	270	S
Psychology	400	90	120	100	120	350	60
Social sciences	500	100	190	140	100	400	60
Economics	320	40	150	90	80	260	50
Political sciences	340	60	110	100	70	280	S
Sociology	270	50	70	70	50	240	S
Other social sciences	370	90	150	100	70	310	40
Engineering	610	80	430	90	120	370	50
Aerospace/aeronautical/astronautical engineering	230	S	140	50	50	160	S
Chemical engineering	380	30	230	60	60	260	S
Civil engineering	320	S	210	60	50	220	S
Electrical/computer engineering	340	70	230	80	80	220	S
Materials/metallurgical engineering	360	30	230	60	70	260	S
Mechanical engineering	330	S	260	60	60	250	S
Other engineering	450	S	290	80	80	330	S
Health	290	50	150	90	50	230	S
	Percent						
All fields							
Science	-	0.1	0.1	0.1	0.1	0.1	0.1
Biological, agricultural, and environmental life sciences	-	0.1	0.2	0.1	0.1	0.2	0.1
Agricultural/food sciences	-	0.3	0.7	0.4	0.4	0.8	S
Biochemistry/biophysics	-	0.2	0.8	0.3	0.3	0.8	S
Cell/molecular biology	-	S	1.0	0.4	0.4	1.1	S
Environmental life sciences	-	0.3	1.0	0.5	0.5	1.3	S
Microbiology	-	S	1.1	0.4	0.4	1.1	0.2
Zoology	-	0.3	0.7	0.4	0.4	0.9	S
Other biological sciences	-	0.1	0.3	0.1	0.2	0.4	0.1
Computer and information sciences	-	S	0.9	0.3	0.3	1.0	S
Mathematics and statistics	-	0.1	0.4	0.2	0.3	0.5	S
Physical sciences	-	0.1	0.2	0.1	0.1	0.2	0.1
Astronomy/astrophysics	-	0.7	1.6	0.4	0.5	1.7	S
Chemistry, except biochemistry	-	0.1	0.3	0.1	0.1	0.3	0.1

TABLE A-6. Standard errors for doctoral scientists and engineers, by field of doctorate and race/ethnicity: 2006

| | | American
 Indian/ | | | | Other
 race/ |
| :--- | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| Field | | | | | | |
| ethnicity ${ }^{\text {a }}$ | | | | | | |

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTE: Standard errors for numbers are rounded up to nearest 10 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-7. Standard errors for doctoral scientists and engineers, by field of doctorate and disability status: 2006

Field	All	With disability	Without disability
	Number		
All fields	1,320	1,050	1,540
Science	1,120	880	1,340
Biological, agricultural, and environmental life sciences	520	510	690
Agricultural/food sciences	320	220	360
Biochemistry/biophysics	380	210	410
Cell/molecular biology	350	130	370
Environmental life sciences	200	120	210
Microbiology	330	120	330
Zoology	260	190	290
Other biological sciences	680	370	710
Computer and information sciences	250	110	260
Mathematics and statistics	310	280	370
Physical sciences	590	440	690
Astronomy/astrophysics	160	80	160
Chemistry, except biochemistry	420	340	510
Earth/atmospheric/ocean sciences	210	180	260
Physics	350	230	390
Psychology	400	400	560
Social sciences	500	430	610
Economics	320	260	350
Political sciences	340	220	380
Sociology	270	190	300
Other social sciences	370	250	390
Engineering	610	430	630
Aerospace/aeronautical/astronautical engineering	230	100	230
Chemical engineering	380	160	410
Civil engineering	320	140	330
Electrical/computer engineering	340	190	350
Materials/metallurgical engineering	360	140	360
Mechanical engineering	330	190	310
Other engineering	450	200	450
Health	290	210	350
	Percent		
All fields	-	0.1	0.1
Science	-	0.2	0.2
Biological, agricultural, and environmental life sciences	-	0.3	0.3
Agricultural/food sciences	-	1.1	1.1
Biochemistry/biophysics	-	0.7	0.7
Cell/molecular biology	-	0.7	0.7
Environmental life sciences	-	1.5	1.5
Microbiology	-	0.9	0.9
Zoology	-	1.4	1.4
Other biological sciences	-	0.5	0.5
Computer and information sciences	-	0.7	0.7
Mathematics and statistics	-	0.8	0.8
Physical sciences	-	0.3	0.3
Astronomy/astrophysics	-	1.4	1.4
Chemistry, except biochemistry	-	0.5	0.5
Earth/atmospheric/ocean sciences	-	0.9	0.9
Physics	-	0.5	0.5

TABLE A-7. Standard errors for doctoral scientists and engineers, by field of doctorate and disability status: 2006

Field	All	With disability	Without disability
Psychology	-		
Social sciences	-	0.4	0.4
Economics	-	0.5	0.5
Political sciences	-	1.0	1.0
Sociology	-	1.0	1.0
Other social sciences	-	1.1	1.1
Engineering	-	0.8	0.8
Aerospace/aeronautical/astronautical engineering	-	0.3	0.3
Chemical engineering	-	1.8	1.8
Civil engineering	-	0.9	0.9
Electrical/computer engineering	-	1.2	1.2
Materials/metallurgical engineering	-	0.5	0.5
Mechanical engineering	-	1.0	1.0
Other engineering	-	1.1	1.1
Health	-	0.8	0.8
$-=$ no value; standard errors are not calculated for proportions of 100%.	0.7	0.7	

NOTES: The SESTAT surveys ask the degree of difficulty-none, slight, moderate, severe, or unable to do-an individual has in seeing (with glasses), hearing (with hearing aid), walking without assistance, or lifting 10 pounds. Those respondents who answered "moderate," "severe," or "unable to do" for any activity were classified as having a disability. Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

	All employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
Field	Total	Male	Female																		
	Number																				
All fields	1,640	1,320	880	160	130	110	800	690	430	310	260	160	310	260	170	1,390	1,220	710	100	80	60
Science	1,570	1,210	870	160	130	100	610	460	360	260	210	150	280	240	150	1,350	1,130	710	100	80	60
Biological, agricultural, and																					
environmental life sciences	780	620	460	110	80	70	340	260	230	140	120	70	180	150	90	670	550	390	70	60	40
Agricultural/food sciences	350	320	130	60	40	40	160	130	60	90	90	30	80	80	40	270	270	100	S	S	S
Biochemistry/biophysics	430	330	290	60	50	S	250	180	160	80	70	50	80	80	30	330	330	230	S	S	S
Cell/molecular biology	370	270	240	S	S	S	220	160	140	70	60	30	70	60	40	240	240	190	S	S	S
Environmental life sciences	200	100	230	S	S	S	80	70	50	40	40	S	40	40	S	180	180	90	S	S	S
Microbiology	340	270	200	S	S	S	160	120	110	50	30	50	60	50	30	250	250	170	40	S	S
Zoology	280	260	150	40	S	S	90	80	50	60	50	30	60	50	20	250	250	120	S	S	S
Other biological sciences	730	550	420	90	70	60	330	230	220	120	90	70	130	80	90	460	460	320	40	40	30
Computer and information																					
Mathematics and statistics	400	350	170	40	40	S	150	140	80	70	50	40	100	100	20	350	330	140	S	S	S
Physical sciences	760	710	330	80	80	40	330	320	170	100	80	50	120	110	50	670	630	270	50	40	30
Astronomy/astrophysics	170	150	90	40	S	S	90	80	40	S	S	S	30	20	S	150	150	70	S	S	S
Chemistry, except biochemistry	600	530	270	70	60	40	250	220	150	90	80	50	100	100	50	460	460	210	40	40	30
Earth/atmospheric/ ocean sciences	270	250	110	50	50	S	100	100	40	40	40	S	70	60	20	210	210	100	S	S	S
Physics	460	440	130	50	50	S	200	190	80	70	60	20	70	60	40	370	370	90	S	S	S
Psychology	600	440	430	90	70	50	140	70	110	120	70	90	140	90	110	550	400	400	60	40	50
Social sciences	630	460	390	100	90	60	210	180	110	160	120	100	110	100	60	550	440	350	60	50	S
Economics	370	340	140	30	30	S	160	150	70	80	70	30	70	60	30	300	300	130	S	S	S
Political sciences	360	300	180	50	50	30	100	100	50	100	80	60	70	60	30	270	270	160	S	S	S
Sociology	290	230	210	50	40	30	70	60	50	70	60	50	50	40	30	200	200	190	S	S	S
Other social sciences	480	340	300	90	80	50	160	120	80	100	60	80	80	60	60	310	310	280	30	S	S
Engineering	740	700	240	90	80	S	480	460	160	100	100	30	110	100	60	570	530	160	30	30	S
Aerospace/aeronautical/ astronautical engineering	230	220	70	S	S	S	140	130	50	50	50	S	50	40	S	170	170	50	S	S	S
Chemical engineering	370	320	140	30	30	S	230	200	100	60	60	20	60	50	S	250	250	90	S	S	S
Civil engineering	310	290	90	S	S	S	210	190	60	60	60	S	50	50	S	220	220	60	S	S	S
Electrical/computer engineering	370	340	110	70	70	S	270	250	80	80	80	20	80	70	40	270	270	70	S	S	S
Materials/metallurgical engineering	340	340	120	S	S	S	240	210	90	70	70	S	50	40	S	240	240	80	S	S	S
Mechanical engineering	330	310	110	S	S	S	270	260	80	60	60	S	50	50	S	260	260	80	S	S	S

	All employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
Field	Total	Male	Female																		
Other engineering	480	450	170	S	S	S	300	270	120	80	70	40	70	70	30	370	370	130	S	S	S
Health	360	220	260	50	S	50	150	110	110	90	80	40	60	40	40	300	180	220	S	S	S
										Percent											
All fields	-	0.1	0.1	-	1.9	1.9	-	0.3	0.3	-	0.7	0.7	-	0.8	0.8	-	0.1	0.1	-	4.7	4.7
Science	-	0.1	0.1	-	2.0	2.0	-	0.4	0.4	-	0.8	0.8	-	0.9	0.9	-	0.2	0.2	-	5.3	5.3
Biological, agricultural, and																					
environmental life sciences	-	0.2	0.2	-	4.6	4.6	-	0.7	0.7	-	1.4	1.4	-	1.6	1.6	-	0.3	0.3	-	10.0	10.0
Agricultural/food sciences	-	0.7	0.7	-	20.0	20.0	-	2.1	2.1	-	5.3	5.3	-	4.7	4.7	-	0.7	0.7	-	S	S
Biochemistry/biophysics	-	0.9	0.9	-	7.8	S	-	2.3	2.3	-	7.8	7.8	-	5.0	5.0	-	1.1	1.1	-	S	S
Cell/molecular biology	-	1.0	1.0	-	S	S	-	2.5	2.5	-	7.6	7.6	-	6.8	6.8	-	1.2	1.2	-	S	S
Environmental life sciences	-	1.4	1.4	-	S	S	-	7.2	7.2	-	12.8	S	-	9.7	S	-	1.4	1.4	-	S	S
Microbiology	-	1.4	1.4	-	S	S	-	4.8	4.8	-	7.9	7.9	-	8.6	8.6	-	1.6	1.6	-	S	S
Zoology	-	1.3	1.3	-	S	S	-	7.4	7.4	-	10.7	10.7	-	6.6	6.6	-	1.4	1.4	-	S	S
Other biological sciences	-	0.4	0.4	-	6.8	6.8	-	1.4	1.4	-	3.0	3.0	-	2.3	2.3	-	0.4	0.4	-	13.7	13.7
Computer and information sciences	-	0.6	0.6	-	S	S	-	1.0	1.0	-	5.4	5.4	-	3.5	3.5	-	0.7	0.7	-	S	S
Mathematics and statistics	-	0.5	0.5	-	7.4	S	-	1.1	1.1	-	5.3	5.3	-	2.5	2.5	-	0.6	0.6	-	S	S
Physical sciences	-	0.3	0.3	-	5.2	5.2	-	0.8	0.8	-	2.2	2.2	-	1.7	1.7	-	0.3	0.3	-	9.1	9.1
Astronomy/astrophysics	-	1.7	1.7	-	S	S	-	5.9	5.9	-	S	S	-	13.5	S	-	1.8	1.8	-	S	S
Chemistry, except biochemistry	-	0.4	0.4	-	10.0	10.0	-	1.1	1.1	-	3.2	3.2	-	2.8	2.8	-	0.4	0.4	-	12.5	12.5
Earth/atmospheric/ ocean sciences	-	0.6	0.6	-	10.9	S	-	1.9	1.9	-	9.9	S	-	4.0	4.0	-	0.6	0.6	-	S	S
Physics	-	0.3	0.3	-	-	S	-	1.1	1.1	-	4.3	4.3	-	4.2	4.2	-	0.3	0.3	-	S	S
Psychology	-	0.3	0.3	-	4.8	4.8	-	1.9	1.9	-	1.2	1.2	-	1.8	1.8	-	0.3	0.3	-	15.6	15.6
Social sciences	-	0.3	0.3	-	5.5	5.5	-	1.3	1.3	-	1.7	1.7	-	1.7	1.7	-	0.4	0.4	-	11.7	S
Economics	-	0.6	0.6	-	-	S	-	2.2	2.2	-	3.0	3.0	-	4.2	4.2	-	0.7	0.7	-	S	S
Political sciences	-	0.8	0.8	-	11.8	11.8	-	4.1	4.1	-	3.6	3.6	-	4.7	4.7	-	0.9	0.9	-	S	S
Sociology	-	1.0	1.0	-	17.5	17.5	-	4.3	4.3	-	3.3	3.3	-	3.9	3.9	-	1.1	1.1	-	S	S
Other social sciences	-	0.8	0.8	-	8.1	8.1	-	3.0	3.0	-	3.4	3.4	-	4.0	4.0	-	0.9	0.9	-	S	S
Engineering	-	0.2	0.2	-	3.3	S	-	0.4	0.4	-	1.0	1.0	-	1.9	1.9	-	0.2	0.2	-	-	S
Aerospace/aeronautical/ astronautical engineering	-	1.3	1.3	-	S	S	-	3.6	3.6	-	7.4	S	-	13.9	S	-	1.2	1.2	-	S	S
Chemical engineering	-	0.8	0.8	-	7.3	S	-	1.8	1.8	-	5.0	5.0	-	5.0	S	-	0.9	0.9	-	S	S
Civil engineering	-	0.9	0.9	-	S	S	-	2.0	2.0	-	3.9	S	-	3.5	S	-	0.9	0.9	-	S	S
Electrical/computer engineering	-	0.3	0.3	-	-	S	-	0.6	0.6	-	2.7	2.7	-	4.4	4.4	-	0.4	0.4	-	S	S

TABLE A-8. Standard errors for employed doctoral scientists and engineers, by field of doctorate, race/ethnicity, and sex: 2006

- = no value; standard errors are not calculated for proportions of 100%.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-9. Standard errors for employed doctoral scientists and engineers, by field of doctorate and citizenship status: 2006

Field	All employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
	Number						
All fields	1,640	1,750	1,410	1,060	880	870	620
Science	1,570	1,670	1,360	930	790	780	500
Biological, agricultural, and environmental life sciences	780	840	690	520	460	430	340
Agricultural/food sciences	350	340	270	200	170	160	100
Biochemistry/biophysics	430	450	390	270	200	180	140
Cell/molecular biology	370	360	290	210	190	180	110
Environmental life sciences	230	220	200	80	90	70	70
Microbiology	340	320	270	170	140	110	90
Zoology	280	290	270	110	70	60	50
Other biological sciences	730	730	640	400	290	270	230
Computer and information sciences	270	260	170	200	190	190	130
Mathematics and statistics	400	450	340	260	200	200	150
Physical sciences	760	810	680	470	360	340	280
Astronomy/astrophysics	170	160	160	90	90	70	60
Chemistry, except biochemistry	600	630	510	360	260	260	210
Earth/atmospheric/ocean sciences	270	270	230	150	150	130	100
Physics	460	460	360	280	230	210	160
Psychology	600	630	590	270	210	190	110
Social sciences	630	640	570	340	310	280	170
Economics	370	360	300	210	210	180	140
Political sciences	360	350	300	150	140	130	60
Sociology	290	290	270	110	90	90	50
Other social sciences	480	450	440	200	160	130	90
Engineering	740	830	510	690	480	500	380
Aerospace/aeronautical/astronautical engineering	230	220	160	160	110	80	90
Chemical engineering	370	360	290	220	210	180	130
Civil engineering	310	270	180	220	170	160	120
Electrical/computer engineering	370	450	250	390	310	300	210
Materials/metallurgical engineering	340	330	220	220	210	160	150
Mechanical engineering	330	330	230	260	230	200	170
Other engineering	480	470	350	310	260	220	170
Health	360	350	310	180	180	170	110
	Percent						
All fields	-	0.1	0.1	0.2	0.1	0.1	0.1
Science	-	0.2	0.2	0.2	0.2	0.2	0.1
Biological, agricultural, and environmental life sciences	-	0.3	0.2	0.3	0.3	0.3	0.2
Agricultural/food sciences	-	0.9	1.0	1.1	0.9	0.9	0.5
Biochemistry/biophysics	-	0.8	1.0	1.0	0.8	0.8	0.5
Cell/molecular biology	-	1.0	1.1	1.1	1.0	1.0	0.6
Environmental life sciences	-	1.3	1.5	1.3	1.3	1.0	1.1
Microbiology	-	1.2	1.5	1.4	1.2	1.0	0.7
Zoology	-	0.7	1.1	1.0	0.7	0.5	0.5
Other biological sciences	-	0.4	0.5	0.5	0.4	0.4	0.3
Computer and information sciences	-	1.3	0.8	1.4	1.3	1.3	0.9
Mathematics and statistics	-	0.7	0.7	0.8	0.7	0.7	0.5
Physical sciences	-	0.3	0.3	0.4	0.3	0.3	0.2
Astronomy/astrophysics	-	1.8	2.0	2.0	1.8	1.5	1.3
Chemistry, except biochemistry	-	0.4	0.5	0.6	0.4	0.4	0.4

TABLE A-9. Standard errors for employed doctoral scientists and engineers, by field of doctorate and citizenship status: 2006

Field	All employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
Earth/atmospheric/ocean sciences	-	0.8	0.7	0.8	0.8	0.7	0.6
Physics	-	0.6	0.6	0.7	0.6	0.6	0.5
Psychology	-	0.2	0.3	0.3	0.2	0.2	0.1
Social sciences	-	0.4	0.3	0.6	0.4	0.5	0.4
Economics	-	0.9	0.9	0.9	0.9	0.8	0.6
Political sciences	-	0.7	0.9	0.8	0.7	0.7	0.3
Sociology	-	0.6	0.6	0.7	0.6	0.6	0.3
Other social sciences	-	0.6	0.8	0.7	0.6	0.5	0.3
Engineering	-	0.4	0.3	0.6	0.4	0.5	0.4
Aerospace/aeronautical/astronautical engineering	-	2.1	2.4	2.8	2.1	1.6	1.7
Chemical engineering	-	1.3	1.4	1.4	1.3	1.2	0.8
Civil engineering	-	1.5	1.7	1.8	1.5	1.5	1.2
Electrical/computer engineering	-	1.0	0.7	1.2	1.0	1.0	0.7
Materials/metallurgical engineering	-	1.7	1.5	1.7	1.7	1.4	1.3
Mechanical engineering	-	1.4	1.3	1.4	1.4	1.3	1.0
Other engineering	-	1.1	1.2	1.2	1.1	0.9	0.7
Health	-	0.6	0.7	0.6	0.6	0.6	0.4

- = no value; standard errors are not calculated for proportions of 100%.

NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-10. Standard errors for employed doctoral scientists and engineers, by field of doctorate and age: 2006

TABLE A-10. Standard errors for employed doctoral scientists and engineers, by field of doctorate and age: 2006

Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
Physics	-	0.7	0.9	0.7	0.8	0.8	0.7	0.7	0.8
Psychology	-	0.4	0.5	0.5	0.5	0.6	0.6	0.5	0.3
Social sciences	-	0.4	0.5	0.5	0.6	0.6	0.6	0.6	0.5
Economics	-	0.7	1.1	0.8	1.2	1.2	1.3	1.2	0.8
Political sciences	-	0.8	1.3	1.2	1.2	1.3	1.3	1.5	1.0
Sociology	-	0.6	1.1	1.0	1.1	1.4	1.5	1.5	1.4
Other social sciences	-	0.7	0.8	0.9	1.0	1.0	1.1	1.0	0.8
Engineering	-	0.4	0.5	0.5	0.5	0.5	0.4	0.4	0.4
Aerospace/aeronautical/astronautical engineering	-	2.2	2.4	2.5	2.3	1.6	1.9	2.2	2.3
Chemical engineering	-	1.2	1.2	1.3	1.2	1.0	1.0	1.2	1.1
Civil engineering	-	1.5	1.6	1.8	1.6	1.3	1.5	1.3	1.4
Electrical/computer engineering	-	0.8	1.0	1.1	0.9	0.9	0.6	0.8	0.7
Materials/metallurgical engineering	-	1.4	1.6	1.6	1.7	1.5	1.2	1.0	0.9
Mechanical engineering	-	1.3	1.2	1.6	1.4	1.3	1.2	1.0	0.9
Other engineering	-	0.9	1.0	1.2	1.3	0.9	1.0	1.2	1.1
Health	-	0.7	1.0	0.9	0.9	1.2	1.2	0.9	0.7

S = suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.

NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-11. Standard errors for employed doctoral scientists and engineers, by field of doctorate and years since doctorate: 2006

Field	All employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
	Number						
All fields	1,640	800	930	900	850	880	1,280
Science	1,570	740	790	770	730	790	1,150
Biological, agricultural, and environmental life sciences	780	450	530	480	380	430	580
Agricultural/food sciences	350	170	200	220	180	160	220
Biochemistry/biophysics	430	180	170	210	150	180	270
Cell/molecular biology	370	230	210	210	120	110	120
Environmental life sciences	230	120	130	100	90	70	150
Microbiology	340	120	150	140	130	90	230
Zoology	280	120	120	100	100	110	240
Other biological sciences	730	400	360	280	290	300	440
Computer and information sciences	270	140	170	160	120	90	70
Mathematics and statistics	400	190	200	200	210	180	330
Physical sciences	760	330	340	360	400	340	620
Astronomy/astrophysics	170	120	90	90	70	70	110
Chemistry, except biochemistry	600	220	270	260	270	240	500
Earth/atmospheric/ocean sciences	270	170	150	190	180	170	240
Physics	460	180	230	220	220	180	340
Psychology	600	280	340	340	340	400	420
Social sciences	630	330	290	320	290	340	540
Economics	370	190	200	160	160	170	270
Political sciences	360	180	180	170	150	130	260
Sociology	290	130	110	100	110	140	220
Other social sciences	480	260	190	230	220	220	310
Engineering	740	390	420	370	310	360	500
Aerospace/aeronautical/astronautical engineering	230	110	100	100	70	80	180
Chemical engineering	370	190	150	160	130	120	250
Civil engineering	310	150	150	130	120	110	180
Electrical/computer engineering	370	190	210	200	180	170	240
Materials/metallurgical engineering	340	170	150	150	110	110	170
Mechanical engineering	330	190	150	160	130	120	210
Other engineering	480	250	200	180	190	180	330
Health	360	220	220	200	170	180	220
All fields	-	0.1	0.1	0.1	0.1	0.1	0.2
Science	-	0.1	0.2	0.1	0.1	0.2	0.2
Biological, agricultural, and environmental life sciences	-	0.3	0.3	0.3	0.2	0.3	0.3
Agricultural/food sciences	-	0.9	1.1	1.3	1.0	0.9	1.0
Biochemistry/biophysics	-	0.7	0.7	0.8	0.6	0.7	0.9
Cell/molecular biology	-	1.2	1.1	1.1	0.7	0.6	0.7
Environmental life sciences	-	1.7	1.9	1.6	1.3	1.1	1.9
Microbiology	-	1.0	1.3	1.2	1.0	0.8	1.6
Zoology	-	1.1	1.1	1.0	1.0	1.1	1.7
Other biological sciences	-	0.5	0.4	0.4	0.4	0.4	0.5
Computer and information sciences	-	0.8	1.1	1.1	0.8	0.6	0.5
Mathematics and statistics	-	0.6	0.7	0.6	0.7	0.6	0.9
Physical sciences	-	0.3	0.3	0.3	0.3	0.3	0.4
Astronomy/astrophysics	-	2.4	2.0	1.9	1.5	1.6	2.2
Chemistry, except biochemistry	-	0.4	0.5	0.5	0.4	0.4	0.7

TABLE A-11. Standard errors for employed doctoral scientists and engineers, by field of doctorate and years since doctorate: 2006

Field	All employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
Earth/atmospheric/ocean sciences	-	0.9	0.8	1.1	1.1	0.9	1.1
Physics	-	0.5	0.6	0.6	0.6	0.5	0.8
Psychology	-	0.3	0.4	0.3	0.3	0.4	0.4
Social sciences	-	0.4	0.4	0.4	0.4	0.4	0.6
Economics	-	0.8	0.8	0.8	0.7	0.7	1.0
Political sciences	-	0.9	0.9	0.9	0.8	0.7	1.2
Sociology	-	0.8	0.7	0.6	0.7	0.9	1.2
Other social sciences	-	0.9	0.7	0.8	0.8	0.8	1.0
Engineering	-	0.3	0.4	0.3	0.3	0.3	0.4
Aerospace/aeronautical/astronautical engineering	-	2.0	1.9	1.8	1.4	1.6	2.7
Chemical engineering	-	1.1	0.9	1.1	0.9	0.8	1.5
Civil engineering	-	1.5	1.3	1.2	1.2	1.0	1.6
Electrical/computer engineering	-	0.6	0.7	0.6	0.6	0.5	0.7
Materials/metallurgical engineering	-	1.3	1.3	1.2	1.0	0.9	1.2
Mechanical engineering	-	1.1	1.0	1.0	0.8	0.7	1.2
Other engineering	-	1.0	0.9	0.8	0.8	0.8	1.2
Health	-	0.7	0.8	0.7	0.6	0.6	0.8

NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-12. Standard errors for employed doctoral scientists and engineers, by field of doctorate and sector of employment: 2006

Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4 -year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text { }}$	$\begin{aligned} & \text { Private } \\ & \text { non- } \\ & \text { profit } \end{aligned}$	Federal government	State and local government	$\begin{array}{r} \text { Self- } \\ \text { employed }^{\text {d }} \end{array}$	Other ${ }^{\text {e }}$
	Number								
All fields	1,640	1,970	700	1,630	990	1,020	670	1,010	190
Science	1,570	1,930	660	1,540	920	910	610	880	190
Biological, agricultural, and									
Agricultural/food sciences	350	370	100	320	160	190	80	120	S
Biochemistry/biophysics	430	420	120	320	210	200	110	180	S
Cell/molecular biology	370	410	100	300	200	140	90	110	S
Environmental life sciences	230	190	50	150	90	140	110	60	S
Microbiology	340	300	100	290	130	150	90	100	S
Zoology	280	300	130	180	90	160	110	120	S
Other biological sciences	730	750	230	580	370	430	190	240	50
Computer and information sciences	270	310	70	280	110	90	80	100	S
Mathematics and statistics	400	480	140	400	160	160	100	170	S
Physical sciences	760	770	290	830	400	360	300	330	50
Astronomy/astrophysics	170	190	70	100	110	80	60	50	S
Chemistry, except biochemistry	600	550	240	620	240	230	180	230	S
Earth/atmospheric/ocean sciences	270	320	120	230	160	210	140	130	S
Physics	460	430	140	540	270	240	170	170	S
Psychology	600	720	410	640	490	300	340	620	50
Social sciences	630	870	290	480	350	320	260	330	160
Economics	370	440	110	280	150	230	100	200	150
Political sciences	360	380	130	230	170	140	150	170	50
Sociology	290	340	120	170	160	110	120	120	S
Other social sciences	480	430	160	290	190	180	190	200	S
Engineering	740	800	160	880	330	360	260	360	60
Aerospace/aeronautical/astronautical engineering	230	190	S	200	60	140	S	100	S
Chemical engineering	370	230	97	360	110	140	90	130	S
Civil engineering	310	250	S	270	80	130	130	130	S
Electrical/computer engineering	370	470	90	530	180	160	80	190	S
Materials/metallurgical engineering	340	210	80	370	110	130	100	80	S
Mechanical engineering	330	280	60	380	100	130	80	120	S
Other engineering	480	400	80	450	150	170	140	180	S
Health	360	460	150	310	230	230	110	160	S
	Percent								
All fields	-	0.3	0.1	0.3	0.2	0.2	0.1	0.2	S
Science	-	0.3	0.1	0.3	0.2	0.2	0.1	0.2	S
Biological, agricultural, and									
Agricultural/food sciences	-	1.9	0.6	1.8	0.9	1.1	0.4	0.7	S
Biochemistry/biophysics	-	1.4	0.5	1.3	0.8	0.8	0.4	0.7	S
Cell/molecular biology	-	2.0	0.6	1.7	1.1	0.8	0.5	0.6	S
Environmental life sciences	-	2.5	0.8	2.3	1.3	2.1	1.6	0.8	S
Microbiology	-	2.4	0.9	2.4	1.1	1.3	0.8	0.9	S
Zoology	-	2.8	1.2	1.8	0.9	1.5	1.0	1.2	S
Other biological sciences	-	0.9	0.3	0.8	0.5	0.6	0.3	0.3	0.1
Computer and information sciences	-	2.1	0.4	1.9	0.8	0.7	0.5	0.7	S
Mathematics and statistics	-	1.4	0.5	1.3	0.5	0.6	0.3	0.6	S

TABLE A-12. Standard errors for employed doctoral scientists and engineers, by field of doctorate and sector of employment: 2006

Field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4 -year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private nonprofit	Federal government	State and local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
Physical sciences	-	0.6	0.3	0.7	0.4	0.3	0.3	0.3	S
Astronomy/astrophysics	-	3.4	1.5	2.2	2.4	1.9	1.3	1.1	S
Chemistry, except biochemistry	-	0.9	0.4	1.0	0.4	0.4	0.3	0.4	S
Earth/atmospheric/ocean sciences	-	1.7	0.6	1.3	0.9	1.2	0.8	0.7	S
Physics	-	1.2	0.4	1.4	0.8	0.7	0.5	0.5	S
Psychology	-	0.7	0.4	0.7	0.5	0.3	0.4	0.6	S
Social sciences	-	1.0	0.4	0.6	0.4	0.4	0.3	0.4	0.2
Economics	-	1.8	0.5	1.2	0.7	1.0	0.4	0.9	0.7
Political sciences	-	1.7	0.7	1.2	0.9	0.7	0.8	0.9	0.3
Sociology	-	1.9	0.8	1.1	1.0	0.7	0.8	0.8	S
Other social sciences	-	1.5	0.6	1.1	0.7	0.7	0.7	0.7	S
Engineering	-	0.7	0.1	0.8	0.3	0.3	0.2	0.3	0.1
Aerospace/aeronautical/astronautical engineering	-	3.5	S	3.6	1.2	2.8	S	2.0	S
Chemical engineering	-	1.6	0.7	1.8	0.7	0.9	0.6	0.9	S
Civil engineering	-	2.3	S	2.3	0.8	1.3	1.3	1.3	S
Electrical/computer engineering	-	1.6	0.3	1.6	0.6	0.5	0.3	0.6	S
Materials/metallurgical engineering	-	1.8	0.6	2.5	0.9	1.2	0.9	0.6	S
Mechanical engineering	-	1.8	0.4	2.1	0.6	0.8	0.5	0.8	S
Other engineering	-	1.6	0.4	1.8	0.7	0.8	0.6	0.8	S
Health	-	1.6	0.5	1.1	0.9	0.9	0.4	0.6	S

S = suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-13. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 2006

Employment sector and field	All employed	Male	Female	All employed	Male	Female
	Number			Percent		
All sectors	1,640	1,320	880	-	0.1	0.1
Science	1,570	1,210	870	-	0.1	0.1
Biological, agricultural, and environmental life sciences	780	620	460	-	0.2	0.2
Computer and information sciences	270	230	100	-	0.6	0.6
Mathematics and statistics	400	350	170	-	0.5	0.5
Physical sciences	760	710	330	-	0.3	0.3
Psychology	600	440	430	-	0.3	0.3
Social sciences	630	460	390	-	0.3	0.3
Engineering	740	700	240	-	0.2	0.2
Health	360	220	260	-	0.6	0.6
4-year educational institutions ${ }^{\text {a }}$	1,970	1,680	1,250	-	0.4	0.4
Science	1,930	1,530	1,230	-	0.4	0.4
Biological, agricultural, and environmental life sciences	1,070	860	660	-	0.7	0.7
Computer and information sciences	310	270	100	-	1.5	1.5
Mathematics and statistics	480	450	170	-	0.9	0.9
Physical sciences	770	700	330	-	0.8	0.8
Psychology	720	560	600	-	1.3	1.3
Social sciences	870	780	470	-	0.8	0.8
Engineering	800	740	250	-	0.7	0.7
Health	460	270	310	-	1.2	1.2
Other educational institutions ${ }^{\text {b }}$	700	550	460	-	1.7	1.7
Science	660	510	440	-	1.8	1.8
Biological, agricultural, and environmental life sciences	310	260	200	-	3.4	3.4
Computer and information sciences	70	60	S	-	4.5	S
Mathematics and statistics	140	130	50	-	5.5	5.5
Physical sciences	290	270	140	-	3.2	3.2
Psychology	410	250	340	-	3.4	3.4
Social sciences	290	200	170	-	3.7	3.7
Engineering	160	160	50	-	4.3	4.3
Health	150	70	120	-	6.7	6.7
Private for-profit ${ }^{\text {c }}$	1,630	1,410	850	-	0.4	0.4
Science	1,540	1,290	810	-	0.5	0.5
Biological, agricultural, and environmental life sciences	840	700	470	-	1.0	1.0
Computer and information sciences	280	260	90	-	1.3	1.3
Mathematics and statistics	400	380	130	-	1.6	1.6
Physical sciences	830	790	320	-	0.6	0.6
Psychology	640	460	410	-	1.6	1.6
Social sciences	480	440	220	-	2.1	2.1
Engineering	880	830	240	-	0.4	0.4
Health	310	230	200	-	3.1	3.1
Private nonprofit	990	910	540	-	1.3	1.3
Science	880	670	590	-	1.3	1.3
Biological, agricultural, and environmental life sciences	500	420	280	-	2.3	2.3
Computer and information sciences	110	90	60	-	9.0	9.0
Mathematics and statistics	160	150	70	-	6.3	6.3
Physical sciences	400	390	160	-	2.2	2.2
Psychology	490	360	340	-	2.6	2.6
Social sciences	350	240	220	-	3.1	3.1
Engineering	330	320	110	-	2.6	2.6
Health	230	130	210	-	4.8	4.8
Federal government	1,020	820	520	-	1.1	1.1
Science	920	800	490	-	1.3	1.3
Biological, agricultural, and environmental life sciences	590	480	340	-	2.0	2.0
Computer and information sciences	90	90	S	-	11.4	S
Mathematics and statistics	160	150	60	-	4.1	4.1

TABLE A-13. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 2006

Employment sector and field	All employed	Male	Female	All employed	Male	Female
	Number			Percent		
Physical sciences	360	310	170	-	2.0	2.0
Psychology	300	220	180	-	3.7	3.7
Social sciences	320	270	210	-	3.3	3.3
Engineering	360	340	130	-	2.2	2.2
Health	230	170	150	-	6.1	6.1
State and local government	670	580	370	-	1.7	1.7
Science	910	740	490	-	1.9	1.9
Biological, agricultural, and environmental life sciences	290	240	170	-	4.0	4.0
Computer and information sciences	80	70	S	-	5.2	S
Mathematics and statistics	100	100	S	-	1.2	S
Physical sciences	300	280	110	-	2.9	2.9
Psychology	340	280	240	-	3.9	3.9
Social sciences	260	220	160	-	4.9	4.9
Engineering	260	240	110	-	4.0	4.0
Health	110	80	90	-	9.4	9.4
Self-employed ${ }^{\text {d }}$	1,010	790	620	-	1.2	1.2
Science	610	540	320	-	1.3	1.3
Biological, agricultural, and environmental life sciences	350	300	170	-	2.8	2.8
Computer and information sciences	100	100	S	-	5.9	S
Mathematics and statistics	170	160	70	-	6.0	6.0
Physical sciences	330	330	110	-	2.6	2.6
Psychology	620	450	460	-	1.7	1.7
Social sciences	330	300	190	-	4.2	4.2
Engineering	360	350	70	-	1.4	1.4
Health	160	130	100	-	7.7	7.7
Other ${ }^{\text {e }}$	190	180	90	-	5.8	5.8
Science	190	170	90	-	6.4	6.4
Biological, agricultural, and environmental life sciences	60	S	50	-	S	19.8
Computer and information sciences	S	S	S	S	S	S
Mathematics and statistics	S	S	S	S	S	S
Physical sciences	50	50	S	-	15.5	S
Psychology	50	S	50	-	S	-
Social sciences	160	160	60	-	5.7	5.7
Engineering	60	60	S	-	9.7	S
Health	S	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\text {b }}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{\text {d }}$ Self-employed or business owner in a non-incorporated business.
${ }^{e}$ Includes employers not broken out separately.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-14. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006

Employment sector and field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	American Indian/ Alaska Native	Asian	Black	Hispanic	White	$\begin{array}{r} \text { Other } \\ \text { race/ } \\ \text { ethnicity }^{\mathrm{a}} \end{array}$
	Number						
All sectors	1,640	160	800	310	310	1,390	100
Science	1,570	160	610	260	280	1,350	100
Biological, agricultural, and environmental life sciences	780	110	340	140	180	670	70
Computer and information sciences	270	S	170	40	50	190	S
Mathematics and statistics	400	40	150	70	100	350	S
Physical sciences	760	80	330	100	120	670	50
Psychology	600	90	140	120	140	550	60
Social sciences	630	100	210	160	110	550	60
Engineering	740	90	480	100	110	570	30
Health	360	50	150	90	60	300	S
4-year educational institutions ${ }^{\text {b }}$	1,970	170	800	360	280	1,870	80
Science	1,930	160	640	320	250	1,770	80
Biological, agricultural, and environmental life sciences	1,070	110	480	130	140	980	40
Computer and information sciences	310	S	170	40	50	280	S
Mathematics and statistics	480	40	220	70	90	380	S
Physical sciences	770	70	320	100	120	720	40
Psychology	720	80	120	160	140	760	60
Social sciences	870	110	240	160	110	800	20
Engineering	800	60	430	130	110	650	S
Health	460	50	160	90	60	390	S
Other educational institutions ${ }^{\text {c }}$	700	50	160	170	140	630	S
Science	660	50	130	170	140	600	S
Biological, agricultural, and environmental life sciences	310	S	80	50	50	300	S
Computer and information sciences	70	S	S	S	S	50	S
Mathematics and statistics	140	S	80	S	40	120	S
Physical sciences	290	S	70	70	50	270	S
Psychology	410	S	70	100	90	390	S
Social sciences	290	50	60	70	50	260	S
Engineering	160	S	90	S	S	130	S
Health	150	S	50	30	S	130	S
Private for-profit ${ }^{\text {d }}$	1,630	130	850	220	220	1,420	80
Science	1,540	110	640	180	210	1,320	70
Biological, agricultural, and environmental life sciences	840	60	400	100	130	750	50
Computer and information sciences	280	S	170	40	40	220	S
Mathematics and statistics	400	S	180	40	60	340	S
Physical sciences	830	70	390	90	100	680	40
Psychology	640	50	110	130	80	610	S
Social sciences	480	60	160	60	70	450	50
Engineering	880	80	550	100	110	680	30
Health	310	S	140	50	30	270	S
Private nonprofit	990	70	380	120	110	870	30
Science	920	70	300	110	100	840	30
Biological, agricultural, and environmental life sciences	500	40	250	50	50	440	S
Computer and information sciences	110	S	50	S	S	100	S
Mathematics and statistics	160	S	50	S	S	160	S
Physical sciences	400	S	160	S	30	370	S
Psychology	490	40	90	80	70	490	S
Social sciences	350	S	100	70	30	330	S

TABLE A-14. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006

Employment sector and field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Engineering	330	S	180	S	50	280	S
Health	230	S	80	40	30	230	S
Federal government	1,020	70	320	150	120	940	40
Science	910	70	280	140	110	820	40
Biological, agricultural, and environmental life sciences	590	70	220	70	50	540	40
Computer and information sciences	90	S	S	S	S	90	S
Mathematics and statistics	160	S	80	S	S	140	S
Physical sciences	360	S	150	50	60	340	S
Psychology	300	S	S	70	60	290	S
Social sciences	320	S	90	60	50	290	S
Engineering	360	S	180	50	40	320	S
Health	230	S	80	30	S	190	S
State and local government	670	80	260	140	90	550	S
Science	610	80	210	130	90	530	S
Biological, agricultural, and environmental life sciences	290	S	120	60	30	270	S
Computer and information sciences	80	S	60	S	S	60	S
Mathematics and statistics	100	S	70	S	S	80	S
Physical sciences	300	S	120	S	60	270	S
Psychology	340	40	70	100	70	310	S
Social sciences	260	50	70	50	S	240	S
Engineering	260	S	160	40	S	210	S
Health	110	S	40	50	S	90	S
Self-employed ${ }^{\text {e }}$	1,010	90	260	120	160	900	S
Science	880	90	230	110	150	780	S
Biological, agricultural, and environmental life sciences	350	60	90	60	60	330	S
Computer and information sciences	100	S	S	S	S	100	S
Mathematics and statistics	170	S	60	S	S	160	S
Physical sciences	330	S	160	S	50	300	S
Psychology	620	60	80	70	130	580	S
Social sciences	330	S	60	50	S	320	S
Engineering	360	S	140	S	60	320	S
Health	160	S	40	S	S	160	S
Other ${ }^{\text {f }}$	190	S	80	S	40	170	S
Science	190	S	80	S	S	170	S
Biological, agricultural, and environmental life sciences	60	S	S	S	S	50	S
Computer and information sciences	S	S	S	S	S	S	S
Mathematics and statistics	S	S	S	S	S	S	S
Physical sciences	50	S	S	S	S	S	S
Psychology	50	S	S	S	S	40	S
Social sciences	160	S	70	S	S	150	S
Engineering	60	S	S	S	S	40	S
Health	S	S	S	S	S	S	S
	Percent						
All sectors	-	S	0.1	S	S	0.1	S
Science	-	S	0.1	0.1	0.1	0.1	S
Biological, agricultural, and environmental							
Computer and information sciences	-	S	1.0	0.3	0.3	1.0	S
Mathematics and statistics	-	0.1	0.5	0.2	0.3	0.6	S
Physical sciences	-	0.1	0.3	0.1	0.1	0.3	S

TABLE A-14. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006

Employment sector and field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	American Indian/ Alaska Native	Asian	Black	Hispanic	White	
Psychology	-	0.1	0.1	0.1	0.1	0.2	0.1
Social sciences	-	0.1	0.2	0.2	0.1	0.4	0.1
Engineering	-	0.1	0.4	0.1	0.1	0.4	S
Health	-	0.2	0.5	0.3	0.2	0.6	S
4 -year educational institutions ${ }^{\text {b }}$	-	0.1	0.3	0.1	0.1	0.3	S
Science	-	0.1	0.3	0.1	0.1	0.3	S
Biological, agricultural, and environmental life sciences	-	0.1	0.6	0.2	0.2	0.6	S
Computer and information sciences	-	S	2.7	0.6	0.7	2.7	S
Mathematics and statistics	-	0.2	1.1	0.4	0.5	1.2	S
Physical sciences	-	0.2	0.8	0.2	0.3	0.8	0.1
Psychology	-	0.2	0.3	0.5	0.4	0.8	0.2
Social sciences	-	0.2	0.4	0.3	0.2	0.6	S
Engineering	-	0.2	1.2	0.4	0.3	1.3	S
Health	-	0.3	0.9	0.6	0.4	1.1	S
Other educational institutions ${ }^{\text {c }}$	-	0.2	0.7	0.8	0.6	1.2	S
Science	-	0.2	0.6	0.8	0.7	1.3	S
Biological, agricultural, and environmental life sciences	-	S	1.5	0.8	0.9	1.8	S
Computer and information sciences	-	S	S	S	S	17.5	S
Mathematics and statistics	-	S	7.6	S	3.5	8.1	S
Physical sciences	-	S	1.6	1.7	1.2	2.4	S
Psychology	-	S	1.1	1.6	1.3	2.3	S
Social sciences	-	1.4	1.6	2.0	1.3	3.1	S
Engineering	-	S	6.8	S	S	7.0	S
Health	-	S	5.2	3.1	S	6.7	S
Private for-profit ${ }^{\text {d }}$	-	0.1	0.4	0.1	0.1	0.4	S
Science	-	0.1	0.4	0.1	0.2	0.5	0.1
Biological, agricultural, and environmental life sciences	-	0.1	0.9	0.2	0.3	1.0	0.1
Computer and information sciences	-	S	2.2	0.5	0.5	2.3	S
Mathematics and statistics	-	S	2.1	0.5	0.7	2.3	S
Physical sciences	-	0.1	0.7	0.2	0.2	0.7	0.1
Psychology	-	0.3	0.6	0.7	0.4	1.0	S
Social sciences	-	0.5	1.6	0.5	0.7	1.8	0.4
Engineering	-	0.1	0.7	0.2	0.2	0.8	S
Health	-	S	2.6	0.9	0.5	2.7	S
Private nonprofit	-	0.2	0.9	0.3	0.3	1.0	0.1
Science	-	0.2	0.8	0.3	0.3	1.0	0.1
Biological, agricultural, and environmental life sciences	-	0.4	2.2	0.5	0.5	2.4	S
Computer and information sciences	-	S	9.0	S	S	9.4	S
Mathematics and statistics	-	S	4.6	S	S	4.7	S
Physical sciences	-	S	2.0	S	0.4	2.2	S
Psychology	-	0.4	0.9	0.8	0.7	1.4	S
Social sciences	-	S	2.0	1.4	0.6	2.1	S
Engineering	-	S	3.9	S	1.2	4.2	S
Health	-	S	3.1	1.6	1.2	3.6	S
Federal government	-	0.2	0.8	0.4	0.3	0.9	0.1
Science	-	0.2	0.8	0.4	0.3	1.0	0.1
Biological, agricultural, and environmental life sciences	-	0.5	1.5	0.5	0.4	1.8	0.2
Computer and information sciences	-	S	S	S	S	11.6	S
Mathematics and statistics	-	S	4.8	S	S	5.1	S

TABLE A-14. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006

Employment sector and field	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	American Indian/ Alaska Native	Asian	Black	Hispanic	White	
Physical sciences	-	S	1.9	0.6	0.7	2.1	S
Psychology	-	S	S	1.9	1.5	2.3	S
Social sciences	-	S	1.6	1.0	0.9	2.1	S
Engineering	-	S	2.8	1.0	0.7	2.9	S
Health	-	S	3.7	1.4	S	3.9	S
State and local government	-	0.4	1.3	0.7	0.5	1.5	S
Science	-	0.5	1.3	0.8	0.6	1.6	S
Biological, agricultural, and environmental life sciences	-	S	3.0	1.5	0.7	3.7	S
Computer and information sciences	-	S	18.0	S	S	18.0	S
Mathematics and statistics	-	S	13.6	S	S	14.6	S
Physical sciences	-	S	3.1	S	1.7	3.6	S
Psychology	-	0.8	1.4	1.9	1.2	2.8	S
Social sciences	-	1.6	2.5	1.7	S	3.3	S
Engineering	-	S	4.9	1.4	S	5.0	S
Health	-	S	4.9	6.8	S	9.6	S
Self-employed ${ }^{\text {e }}$	-	0.2	0.6	0.3	0.4	0.8	S
Science	-	0.2	0.6	0.3	0.4	0.8	S
Biological, agricultural, and environmental life sciences	-	1.2	1.8	1.1	1.0	2.5	S
Computer and information sciences	-	S	S	S	S	11.2	S
Mathematics and statistics	-	S	5.1	S	S	4.8	S
Physical sciences	-	S	3.4	S	1.2	3.3	S
Psychology	-	0.3	0.4	0.3	0.6	0.9	S
Social sciences	-	S	1.3	1.1	S	1.7	S
Engineering	-	S	2.7	S	1.1	3.0	S
Health	-	S	3.4	S	S	4.2	S
Other ${ }^{\text {f }}$	-	S	5.0	S	2.2	5.8	S
Science	-	S	5.4	S	S	6.1	S
Biological, agricultural, and environmental life sciences	-	S	S	S	S	12.2	S
Computer and information sciences	-	S	S	S	S	S	S
Mathematics and statistics	-	S	S	S	S	S	S
Physical sciences	-	S	S	S	S	S	S
Psychology	-	S	S	S	S	19.0	S
Social sciences	-	S	6.2	S	S	6.9	S
Engineering	-	S	S	S	S	27.3	S
Health	-	S	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100\%.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{c}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {d }}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Field	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
	Number										
All fields	1,640	2,190	1,920	1,570	940	1,280	910	2,100	1,350	1,840	1,040
Science	1,570	1,830	1,600	1,410	690	1,080	830	1,890	1,210	1,740	890
Biological, agricultural, and environmental life sciences	780	1,030	830	860	310	590	380	1,000	680	810	500
Agricultural/food sciences	350	390	350	230	90	240	120	340	170	260	240
Biochemistry/biophysics	430	450	370	400	110	260	170	440	280	400	190
Cell/molecular biology	370	390	330	400	60	190	110	350	220	290	200
Environmental life sciences	230	230	220	140	80	100	80	210	110	170	110
Microbiology	340	340	270	300	80	180	80	310	180	240	170
Zoology	280	290	240	260	70	90	80	290	190	240	140
Other biological sciences	730	750	640	610	250	360	250	740	530	570	320
Computer and information sciences	270	280	280	230	160	230	270	250	110	280	130
Mathematics and statistics	400	480	430	430	280	230	350	390	190	510	230
Physical sciences	760	870	780	670	470	700	500	780	380	700	440
Astronomy/astrophysics	170	190	130	200	100	100	160	170	70	170	70
Chemistry, except biochemistry	600	630	570	470	290	530	270	620	270	520	330
Earth/atmospheric/ocean sciences	270	360	310	310	140	180	190	310	150	270	140
Physics	460	520	500	410	340	420	370	400	240	380	210
Psychology	600	720	670	600	260	340	240	710	740	680	340
Social sciences	630	690	660	590	220	280	290	750	480	800	380
Economics	370	440	430	340	120	140	170	430	280	420	230
Political sciences	360	400	320	310	100	160	130	360	220	380	180
Sociology	290	320	280	280	90	130	110	320	160	310	150
Other social sciences	480	430	400	350	120	210	140	440	260	490	230
Engineering	740	920	900	600	630	730	560	830	400	650	570
Aerospace/aeronautical/astronautical engineering	230	230	210	120	160	180	140	180	90	140	120
Chemical engineering	370	400	330	200	240	320	210	330	180	210	210
Civil engineering	310	350	310	130	220	160	150	270	160	230	150
Electrical/computer engineering	370	490	490	260	420	420	340	460	190	390	270
Materials/metallurgical engineering	340	330	300	180	200	270	110	310	130	160	200
Mechanical engineering	330	360	320	210	260	290	240	310	130	250	170
Other engineering	480	480	390	300	260	360	250	430	220	310	230
Health	360	420	380	290	120	250	120	470	320	420	200
						Perc					
All fields	-	0.3	0.3	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.2
Science	-	0.3	0.3	0.3	0.1	0.2	0.2	0.4	0.2	0.6	0.2

Field	Research and development							Management, sales, administration	Professional services	Teaching	Other
	All employed	Any R\&D	Applied research	Basic research	Design	Development	Computer applications				
Biological, agricultural, and environmental life sciences	-	0.6	0.5	0.5	0.2	0.4	0.2	0.6	0.4	0.5	0.3
Agricultural/food sciences	-	1.9	1.9	1.3	0.5	1.3	0.7	1.9	1.0	1.5	1.4
Biochemistry/biophysics	-	1.4	1.4	1.4	0.4	1.1	0.7	1.7	1.1	1.5	0.8
Cell/molecular biology	-	1.7	1.8	1.9	0.3	1.1	0.6	1.9	1.2	1.6	1.1
Environmental life sciences	-	2.8	2.9	2.1	1.3	1.6	1.3	3.0	1.6	2.5	1.6
Microbiology	-	2.3	2.2	2.4	0.7	1.6	0.6	2.5	1.5	1.9	1.4
Zoology	-	2.5	2.3	2.5	0.7	0.9	0.8	2.6	1.8	2.4	1.4
Other biological sciences	-	0.9	0.8	0.8	0.4	0.5	0.3	0.9	0.7	0.7	0.4
Computer and information sciences	-	1.7	2.0	1.6	1.2	1.6	1.9	1.7	0.8	1.9	0.9
Mathematics and statistics	-	1.4	1.4	1.4	0.9	0.8	1.2	1.3	0.6	1.6	0.8
Physical sciences		0.6	0.7	0.6	0.4	0.6	0.4	0.6	0.3	0.6	0.4
Astronomy/astrophysics	-	3.3	2.9	3.9	2.3	2.2	3.5	3.8	1.6	3.6	1.5
Chemistry, except biochemistry	-	0.9	1.0	0.8	0.5	0.9	0.5	1.0	0.5	0.8	0.6
Earth/atmospheric/ocean sciences	-	1.7	1.6	1.6	0.8	1.0	1.1	1.8	0.8	1.4	0.8
Physics	-	1.2	1.4	1.1	1.0	1.1	1.0	1.1	0.7	1.0	0.6
Psychology	-	0.7	0.7	0.6	0.3	0.3	0.2	0.7	0.7	0.7	0.4
Social sciences		0.8	0.8	0.7	0.3	0.3	0.3	0.9	0.6	0.9	0.5
Economics	-	1.8	1.8	1.5	0.5	0.6	0.8	1.8	1.2	1.8	1.0
Political sciences	-	1.8	1.6	1.6	0.5	0.8	0.7	1.9	1.1	1.8	1.0
Sociology	-	1.8	1.7	1.8	0.6	0.8	0.7	1.9	1.0	1.9	1.0
Other social sciences	-	1.3	1.5	1.3	0.5	0.8	0.5	1.6	1.0	1.6	0.9
Engineering		0.7	0.8	0.6	0.6	0.6	0.5	0.8	0.4	0.6	0.5
Aerospace/aeronautical/astronautical engineering	-	3.0	3.8	2.3	3.2	3.4	2.9	3.7	1.9	2.7	2.3
Chemical engineering	-	2.1	2.1	1.3	1.7	2.0	1.4	2.0	1.3	1.4	1.4
Civil engineering	-	2.6	2.6	1.3	2.1	1.6	1.5	2.6	1.6	2.3	1.5
Electrical/computer engineering	-	1.3	1.5	0.8	1.4	1.3	1.1	1.5	0.6	1.3	0.9
Materials/metallurgical engineering	-	1.8	2.5	1.6	1.7	2.0	1.0	2.2	1.1	1.4	1.7
Mechanical engineering	-	1.9	2.0	1.3	1.6	1.9	1.5	1.8	0.8	1.6	1.0
Other engineering	-	1.6	1.6	1.3	1.1	1.6	1.1	1.8	1.0	1.3	1.0
Health	-	1.4	1.3	1.1	0.4	0.9	0.4	1.7	1.1	1.5	0.8

- = no value; standard errors are not calculated for proportions of 100%.

NOTES: Primary and secondary work activities were self-defined by respondent in response to question "On which two activities...did you work the most hours during a typical week on this job?" Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-16. Standard errors for employed doctoral scientists and engineers, by employer location and broad field of doctorate: 2006

Employer location	Science								Engineering	Health
	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
	Number									
All locations	1,640	1,570	780	270	400	760	600	630	740	360
New England	1,050	970	560	150	220	450	510	390	440	220
Connecticut	490	400	270	60	80	230	220	170	190	120
Maine	270	240	120	S	S	100	110	120	90	70
Massachusetts	840	810	490	140	190	370	390	320	320	170
New Hampshire	260	220	90	40	70	120	100	90	130	50
Rhode Island	280	250	110	50	70	120	140	110	130	60
Vermont	210	180	80	S	S	50	100	120	80	50
Middle Atlantic	1,480	1,280	740	240	320	610	650	600	580	270
New Jersey	730	620	340	130	170	350	260	240	280	150
New York	1,070	930	460	210	220	450	470	450	440	190
Pennsylvania	910	760	470	90	180	330	350	330	320	190
East North Central	1,260	1,210	600	180	310	570	570	550	560	290
Illinois	810	710	330	120	160	300	350	340	340	160
Indiana	490	460	260	60	130	200	220	210	220	110
Michigan	630	550	330	70	170	270	290	230	360	120
Ohio	650	520	330	80	150	290	320	270	320	160
Wisconsin	540	480	280	50	120	190	200	170	190	120
West North Central	1,020	840	500	110	220	360	400	310	370	210
lowa	350	310	190	60	110	120	150	140	130	80
Kansas	350	300	170	40	60	100	170	120	140	80
Minnesota	600	550	310	70	100	220	250	190	210	130
Missouri	460	420	260	S	130	210	210	190	180	110
Nebraska	200	180	120	S	S	70	90	70	60	70
North Dakota	280	260	160	S	60	110	130	120	90	40
South Dakota	160	160	110	S	40	40	80	70	40	S
South Atlantic	1,560	1,480	840	210	400	620	580	650	600	390
Delaware	280	260	130	S	80	160	90	70	120	50
District of Columbia	540	530	210	50	90	210	210	360	210	100
Florida	670	560	330	110	170	220	300	250	280	150
Georgia	560	540	310	70	100	240	260	210	200	130
Maryland	970	780	420	100	180	330	320	230	320	220
North Carolina	680	690	390	80	160	290	270	230	240	160
South Carolina	390	370	230	50	100	180	170	150	160	100
Virginia	700	600	290	120	210	330	270	260	270	110
West Virginia	240	220	150	S	50	80	80	80	100	60
East South Central	770	710	380	100	180	320	330	280	310	210
Alabama	400	320	200	50	110	170	150	100	160	110
Kentucky	320	300	190	40	110	140	130	160	110	80
Mississippi	260	230	170	60	70	100	80	90	130	80
Tennessee	470	430	240	50	90	220	250	180	200	120
West South Central	1,160	930	460	150	210	470	440	340	450	220
Arkansas	270	260	170	S	60	110	100	110	90	70
Louisiana	390	320	200	70	70	120	140	130	140	110
Oklahoma	310	270	160	70	70	150	160	120	120	60
Texas	980	810	420	130	180	460	360	320	430	190
Mountain	930	880	440	130	200	450	370	350	460	170
Arizona	410	350	210	S	70	170	200	200	220	90
Colorado	580	550	290	80	120	260	260	190	220	110

Employer location	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Idaho	290	260	140	S	60	100	130	80	120	50
Montana	220	210	140	S	70	90	90	70	70	50
New Mexico	450	420	180	50	90	260	120	140	270	70
Nevada	250	230	130	S	80	110	110	90	120	40
Utah	380	310	190	60	110	120	150	160	190	70
Wyoming	130	140	90	S	40	60	70	50	40	S
Pacific	1,520	1,330	830	250	330	640	600	480	760	240
Alaska	150	150	100	S	S	80	40	80	50	S
California	1,300	1,190	700	250	300	560	550	400	700	200
Hawaii	270	250	120	S	70	130	110	110	80	S
Oregon	450	370	260	70	80	220	170	130	210	90
Washington	580	540	370	110	120	240	260	240	250	160
Puerto Rico	160	160	90	S	40	70	90	40	30	50
Other U.S. territories and other areas	200	180	80	S	60	100	90	90	110	S
	Percent									
All locations	-	-	-	-	-	-	-	-	-	-
New England	0.2	0.2	0.4	1.1	0.7	0.4	0.5	0.5	0.4	0.8
Connecticut	0.1	0.1	0.2	0.4	0.2	0.2	0.2	0.2	0.2	0.4
Maine	0.1	0.1	0.1	S	S	0.1	0.1	0.1	0.1	0.2
Massachusetts	0.1	0.2	0.3	1.0	0.6	0.3	0.4	0.4	0.3	0.6
New Hampshire	0.1	0.1	0.1	0.3	0.2	0.1	0.1	0.1	0.1	0.2
Rhode Island	0.1	0.1	0.1	0.4	0.2	0.1	0.1	0.1	0.1	0.2
Vermont	0.1	0.1	0.1	S	S	0.1	0.1	0.1	0.1	0.2
Middle Atlantic	0.2	0.3	0.5	1.7	1.0	0.5	0.7	0.7	0.5	1.0
New Jersey	0.1	0.1	0.2	0.9	0.5	0.3	0.3	0.3	0.3	0.5
New York	0.2	0.2	0.3	1.5	0.7	0.4	0.5	0.5	0.4	0.7
Pennsylvania	0.1	0.2	0.3	0.7	0.6	0.3	0.4	0.4	0.3	0.7
East North Central	0.2	0.2	0.4	1.3	1.0	0.5	0.6	0.7	0.5	1.0
Illinois	0.1	0.1	0.2	0.8	0.5	0.3	0.4	0.4	0.3	0.6
Indiana	0.1	0.1	0.2	0.4	0.4	0.2	0.2	0.2	0.2	0.4
Michigan	0.1	0.1	0.2	0.5	0.6	0.2	0.3	0.3	0.3	0.4
Ohio	0.1	0.1	0.2	0.6	0.5	0.2	0.3	0.3	0.3	0.6
Wisconsin	0.1	0.1	0.2	0.4	0.4	0.2	0.2	0.2	0.2	0.4
West North Central	0.2	0.2	0.3	0.8	0.7	0.3	0.4	0.4	0.3	0.8
lowa	0.1	0.1	0.1	0.4	0.4	0.1	0.1	0.2	0.1	0.3
Kansas	0.1	0.1	0.1	0.3	0.2	0.1	0.2	0.1	0.1	0.3
Minnesota	0.1	0.1	0.2	0.5	0.3	0.2	0.3	0.2	0.2	0.5
Missouri	0.1	0.1	0.2	S	0.4	0.2	0.2	0.2	0.2	0.4
Nebraska	0.1	0.1	0.1	S	S	0.1	0.1	0.1	0.1	0.3
North Dakota	0.1	0.1	0.1	S	0.2	0.1	0.1	0.1	0.1	0.1
South Dakota	0.1	0.1	0.1	S	0.1	S	0.1	0.1	0.1	S
South Atlantic	0.2	0.3	0.5	1.5	1.4	0.5	0.6	0.8	0.5	1.4
Delaware	0.1	0.1	0.1	S	0.3	0.1	0.1	0.1	0.1	0.2
District of Columbia	0.1	0.1	0.1	0.3	0.3	0.2	0.2	0.4	0.2	0.4
Florida	0.1	0.1	0.2	0.8	0.6	0.2	0.3	0.3	0.3	0.5
Georgia	0.1	0.1	0.2	0.5	0.3	0.2	0.3	0.3	0.2	0.5
Maryland	0.2	0.2	0.3	0.7	0.6	0.3	0.3	0.3	0.3	0.8
North Carolina	0.1	0.1	0.2	0.6	0.5	0.2	0.3	0.3	0.2	0.6

Employer location	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
South Carolina	0.1	0.1	0.1	0.3	0.3	0.2	0.2	0.2	0.1	0.3
Virginia	0.1	0.1	0.2	0.9	0.7	0.3	0.3	0.3	0.3	0.4
West Virginia	0.1	0.1	0.1	S	0.2	0.1	0.1	0.1	0.1	0.2
East South Central	0.1	0.1	0.2	0.7	0.6	0.3	0.3	0.3	0.3	0.8
Alabama	0.1	0.1	0.1	0.3	0.4	0.1	0.1	0.1	0.1	0.4
Kentucky	0.1	0.1	0.1	0.2	0.4	0.1	0.1	0.2	0.1	0.3
Misssissippi	0.1	0.1	0.1	0.4	0.2	0.1	0.1	0.1	0.1	0.3
Tennessee	0.1	0.1	0.1	0.4	0.3	0.2	0.3	0.2	0.2	0.4
West South Central	0.2	0.2	0.3	1.1	0.7	0.4	0.5	0.4	0.4	0.8
Arkansas	0.1	0.1	0.1	S	0.2	0.1	0.1	0.1	0.1	0.2
Louisiana	0.1	0.1	0.1	0.5	0.2	0.1	0.1	0.2	0.1	0.4
Oklahoma	0.1	0.1	0.1	0.5	0.2	0.1	0.2	0.1	0.1	0.2
Texas	0.2	0.2	0.3	0.9	0.6	0.4	0.4	0.4	0.4	0.7
Mountain	0.2	0.2	0.3	0.9	0.7	0.4	0.4	0.4	0.4	0.6
Arizona	0.1	0.1	0.1	S	0.2	0.1	0.2	0.2	0.2	0.3
Colorado	0.1	0.1	0.2	0.6	0.4	0.2	0.3	0.2	0.2	0.4
Idaho	0.1	0.1	0.1	S	0.2	0.1	0.1	0.1	0.1	0.2
Montana	0.1	0.1	0.1	S	0.2	0.1	0.1	0.1	0.1	0.2
New Mexico	0.1	0.1	0.1	0.4	0.3	0.2	0.1	0.2	0.2	0.2
Nevada	0.1	0.1	0.1	S	0.3	0.1	0.1	0.1	0.1	0.1
Utah	0.1	0.1	0.1	0.4	0.3	0.1	0.2	0.2	0.2	0.2
Wyoming	0.1	0.1	0.1	S	0.1	0.1	0.1	0.1	0.1	S
Pacific	0.2	0.3	0.5	1.8	1.1	0.5	0.6	0.6	0.7	0.9
Alaska	0.1	0.1	0.1	S	S	0.1	0.1	0.1	0.1	S
California	0.2	0.2	0.4	1.7	1.0	0.5	0.6	0.5	0.6	0.7
Hawaii	0.1	0.1	0.1	S	0.2	0.1	0.1	0.1	0.1	S
Oregon	0.1	0.1	0.2	0.4	0.3	0.2	0.2	0.2	0.2	0.3
Washington	0.1	0.1	0.2	0.7	0.4	0.2	0.3	0.3	0.2	0.6
Puerto Rico	0.1	0.1	0.1	S	0.1	0.1	0.1	0.1	0.1	0.2
Other U.S. territories and other areas	0.1	0.1	0.1	S	0.2	0.1	0.1	0.1	0.1	S

-= no value; standard errors are not calculated for proportions of 100%.
NOTES: Because survey sample design does not include geography, the reliability of estimates in some states may be poor due to small sample size. Standard errors for numbers are rounded up to nearest 10 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-17. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, and faculty rank: 2006

Field and sex	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{array}{r} \text { Full } \\ \text { professor } \end{array}$	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
All fields	1,970	1,210	1,070	1,000	500	190	1,080
Male	0.4	0.6	1.0	1.0	2.3	6.3	1.0
Female	0.4	0.6	1.0	1.0	2.3	6.3	1.0
Science	1,930	1,210	950	930	460	160	1,060
Male	0.4	0.7	1.0	1.1	2.5	6.9	1.1
Female	0.4	0.7	1.0	1.1	2.5	6.9	1.1
Biological, agricultural, and environmental life sciences	1,070	700	520	550	270	120	680
Male	0.7	1.2	1.5	1.7	4.3	13.0	1.5
Female	0.7	1.2	1.5	1.7	4.3	13.0	1.5
Computer and information sciences	310	170	220	160	80	S	130
Male	1.5	3.6	4.5	3.4	9.3	S	7.0
Female	1.5	3.6	4.5	3.4	S	S	7.0
Mathematics and statistics	480	340	300	260	140	40	180
Male	0.9	1.4	3.0	3.0	8.6	S	4.3
Female	0.9	1.4	3.0	3.0	8.6	S	4.3
Physical sciences	770	510	400	350	180	60	490
Male	0.8	0.9	2.4	2.4	4.1	17.0	1.9
Female	0.8	0.9	2.4	2.4	4.1	S	1.9
Psychology	720	490	440	410	250	60	380
Male	1.3	2.3	3.3	2.5	4.7	19.7	2.8
Female	1.3	2.3	3.3	2.5	4.7	19.7	2.8
Social sciences	870	670	510	450	210	80	350
Male	0.8	1.3	1.8	1.8	5.5	-	3.9
Female	0.8	1.3	1.8	1.8	5.5	S	3.9
Engineering	800	500	380	350	120	80	380
Male	0.7	0.8	1.9	2.1	7.2	-	2.4
Female	0.7	0.8	1.9	2.1	7.2	S	2.4
Health	460	280	260	300	110	60	170
Male	1.2	3.4	3.7	3.0	5.9	S	5.8
Female	1.2	3.4	3.7	3.0	5.9	22.5	5.8

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.

NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Standard errors for numbers are rounded up to nearest 10 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-18. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, faculty rank, and years since doctorate: 2006

	All employed		Full professor		Associate professor		Assistant professor		Instructor/lecturer		All other faculty		Rank not applicable	
Field and sex	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	10 or more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$10 \text { or }$ more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & \text { Less } \\ & \text { than } 10 \end{aligned}$	10 or more	Less than 10	$10 \text { or }$ more	Less than 10	$10 \text { or }$ more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	10 or more
All fields	1,110	1,750	210	1,210	580	960	810	590	320	400	80	160	830	710
Male	0.6	0.4	5.5	0.6	2.0	1.1	1.1	2.1	3.5	3.3	14.6	6.7	1.2	2.0
Female	0.6	0.4	5.5	0.6	2.0	1.1	1.1	2.1	3.5	3.3	14.6	6.7	1.2	2.0
Science	1,070	1,710	160	1,200	470	910	800	570	300	370	70	150	750	680
Male	0.7	0.5	6.0	0.7	2.2	1.1	1.2	2.2	3.6	3.7	17.3	7.5	1.3	2.0
Female	0.7	0.5	6.0	0.7	2.2	1.1	1.2	2.2	3.6	3.7	17.3	7.5	1.3	2.0
Biological, agricultural, and														
environmental life sciences	640	940	70	710	210	500	440	430	180	190	60	100	550	380
Male	1.1	0.8	15.4	1.2	5.2	1.7	2.3	3.1	6.6	5.9	23.1	15.4	1.6	3.3
Female	1.1	0.8	15.4	1.2	5.2	1.7	2.3	3.1	6.6	5.9	23.1	15.4	1.6	3.3
Computer and information sciences	190	250	70	160	120	170	150	50	60	50	S	S	110	60
Male	2.1	2.5	12.9	3.8	8.5	4.9	3.4	17.9	7.1	24.5	S	S	8.2	16.1
Female	2.1	2.5	S	3.8	8.5	4.9	3.4	S	S	S	S	S	8.2	S
Mathematics and statistics	250	400	S	340	170	270	220	120	70	120	S	40	140	120
Male	2.2	1.2	S	1.4	5.3	3.8	3.4	9.4	13.4	10.7	S	S	5.0	9.2
Female	2.2	1.2	S	1.4	5.3	3.8	3.4	9.4	13.4	10.7	S	S	5.0	9.2
Physical sciences	460	630	60	500	170	340	310	200	110	150	S	50	360	300
Male	1.4	0.9	16.0	0.9	6.0	2.7	2.7	5.0	7.6	4.9	S	20.8	2.5	2.7
Female	1.4	0.9	S	0.9	6.0	2.7	2.7	5.0	7.6	4.9	S	S	2.5	2.7
Psychology	400	660	80	470	230	390	320	230	160	170	S	60	290	250
Male	1.6	1.6	18.4	2.3	5.1	3.8	2.7	5.6	4.9	9.0	S	20.6	4.0	4.6
Female	1.6	1.6	18.4	2.3	5.1	3.8	2.7	5.6	4.9	9.0	S	S	4.0	4.6
Social sciences	480	800	100	650	240	460	420	200	140	170	S	80	210	290
Male	1.2	1.0	8.5	1.3	3.4	2.1	1.9	6.8	6.5	8.0	S	-	5.2	5.1
Female	1.2	1.0	8.5	1.3	3.4	2.1	1.9	6.8	6.5	8.0	S	S	5.2	5.1
Engineering	460	660	100	480	180	320	300	180	100	90	S	70	300	210
Male	1.6	0.7	2.4	0.8	3.8	2.1	2.5	4.9	12.8	8.1	S	-	2.9	4.2
Female	1.6	0.7	S	0.8	3.8	2.1	2.5	4.9	12.8	S	S	S	2.9	4.2
Health	290	330	90	250	170	230	260	140	70	80	S	S	160	120
Male	1.9	2.0	S	3.7	5.1	4.9	3.2	8.0	S	S	S	S	5.9	11.2
Female	1.9	2.0	10.5	3.7	5.1	4.9	3.2	8.0	5.5	11.5	S	S	5.9	11.2

$\mathrm{S}=$ suppressed for reliability or confidentiality.
$-=$ no value; standard errors are not calculated for proportions of 100%.
NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Standard errors for numbers are rounded up to nearest 10 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-19. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and faculty rank: 2006

Field and race/ethnicity	All employed	$\begin{array}{r} \text { Full } \\ \text { professor } \end{array}$	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
All fields	1,970	1,210	1,070	1,000	500	190	1,080
American Indian/Alaska Native	0.1	0.1	0.1	0.1	0.5	S	0.1
Asian	0.3	0.5	0.7	0.8	1.4	3.6	0.9
Black	0.1	0.2	0.4	0.4	0.8	2.8	0.3
Hispanic	0.1	0.2	0.3	0.2	0.6	S	0.3
White	0.3	0.6	0.7	0.8	1.8	5.1	0.9
Other race/ethnicity ${ }^{\text {a }}$	0.1	0.1	S	0.1	S	S	0.1
Science	1,930	1,210	950	930	460	160	1,060
American Indian/Alaska Native	0.1	0.2	0.2	0.2	0.5	S	0.1
Asian	0.3	0.4	0.7	0.9	1.4	4.7	0.9
Black	0.1	0.2	0.4	0.4	0.8	3.7	0.4
Hispanic	0.1	0.3	0.3	0.3	0.7	S	0.3
White	0.3	0.6	0.7	1.0	1.8	6.6	0.9
Other race/ethnicity ${ }^{\text {a }}$	0.1	0.1	S	0.1	S	S	0.1
Biological, agricultural, and environmental life sciences	1,070	700	520	550	270	120	680
American Indian/Alaska Native	0.1	0.3	0.4	0.3	S	S	0.1
Asian	0.6	0.7	1.4	1.6	3.6	S	1.3
Black	0.2	0.3	0.5	0.7	0.8	S	0.4
Hispanic	0.2	0.4	0.6	0.4	1.0	S	0.4
White	0.6	0.9	1.4	1.7	3.6	8.0	1.3
Other race/ethnicity ${ }^{\text {a }}$	0.1	S	S	S	S	S	S
Computer and information sciences	310	170	220	160	80	S	130
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	2.7	5.7	5.1	5.0	S	S	8.3
Black	0.6	S	1.8	1.2	S	S	S
Hispanic	0.7	2.4	S	1.0	S	S	S
White	2.7	5.4	5.1	5.0	11.2	S	8.2
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Mathematics and statistics	480	340	300	260	140	40	180
American Indian/Alaska Native	0.2	0.5	S	S	S	S	S
Asian	1.1	1.6	2.9	3.1	5.1	S	5.2
Black	0.4	0.4	1.1	1.3	S	S	S
Hispanic	0.5	1.1	1.4	0.5	S	S	1.3
White	1.2	1.9	3.2	3.4	6.2	11.9	5.1
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Physical sciences	770	510	400	350	180	60	490
American Indian/Alaska Native	0.2	0.3	S	S	S	S	0.4
Asian	0.8	1.3	1.7	2.1	4.4	S	2.1
Black	0.2	0.3	0.7	0.8	3.0	S	0.5
Hispanic	0.3	0.6	0.9	0.7	1.9	S	0.5
White	0.8	1.5	1.9	2.5	5.3	23.5	2.2
Other race/ethnicity ${ }^{\text {a }}$	0.1	S	S	S	S	S	S
Psychology	720	490	440	410	250	60	380
American Indian/Alaska Native	0.2	0.6	0.5	0.3	S	S	S
Asian	0.3	0.4	1.0	1.0	1.8	S	1.0
Black	0.5	0.9	1.6	1.0	2.0	S	1.3
Hispanic	0.4	0.7	1.0	1.0	2.3	S	1.1
White	0.8	1.3	2.1	1.9	3.5	13.1	2.0
Other race/ethnicity ${ }^{\text {a }}$	0.2	S	S	0.6	S	S	S
Social sciences	870	670	510	450	210	80	350
American Indian/Alaska Native	0.2	0.4	0.2	0.6	S	S	S
Asian	0.4	0.7	1.0	1.3	2.1	S	2.0

TABLE A-19. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and faculty rank: 2006

| Field and race/ethnicity | All employed | Full
 professor | Associate
 professor | Assistant
 professor | Instructor/
 lecturer | All other
 faculty |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Black | 0.3 | 0.5 | 0.8 | 0.8 | 1.5 | S |
| applicable | | | | | | |

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100\%.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and universityaffiliated research institutions. Standard errors for numbers are rounded up to nearest 10

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-20. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, and tenure status: 2006

Field and sex	All employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
All fields	1,970	1,500	1,010	780	1,340
Male	0.4	0.6	1.1	1.4	0.9
Female	0.4	0.6	1.1	1.4	0.9
Science	1,930	1,430	960	760	1,230
Male	0.4	0.7	1.3	1.5	1.0
Female	0.4	0.7	1.3	1.5	1.0
Biological, agricultural, and environmental life sciences	1,070	740	510	500	730
Male	0.7	1.1	2.0	2.3	1.4
Female	0.7	1.1	2.0	2.3	1.4
Computer and information sciences	310	240	170	100	150
Male	1.5	2.7	3.3	8.4	5.9
Female	1.5	2.7	3.3	8.4	5.9
Mathematics and statistics	480	400	280	180	180
Male	0.9	1.4	3.0	6.8	3.9
Female	0.9	1.4	3.0	6.8	3.9
Physical sciences	770	630	330	300	510
Male	0.8	1.0	2.5	2.7	1.8
Female	0.8	1.0	2.5	2.7	1.8
Psychology	720	560	340	360	500
Male	1.3	2.1	3.3	3.9	2.2
Female	1.3	2.1	3.3	3.9	2.2
Social sciences	870	750	410	300	400
Male	0.8	1.1	2.2	3.5	3.2
Female	0.8	1.1	2.2	3.5	3.2
Engineering	800	610	310	230	380
Male	0.7	0.9	2.3	3.2	2.2
Female	0.7	0.9	2.3	3.2	2.2
Health	460	300	260	220	260
Male	1.2	2.9	3.4	4.8	4.1
Female	1.2	2.9	3.4	4.8	4.1

NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-21. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, tenure status, and years since doctorate: 2006

Field and sex	All employed		Tenured		Not tenured				Tenure not applicable			
			On tenure track	Not on tenure track								
	Less than 10	10 or more			$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	10 or more	$\begin{gathered} \text { Less } \\ \text { than } 10 \end{gathered}$	10 or more	$\begin{gathered} \text { Less } \\ \text { than } 10 \end{gathered}$	10 or more	$\begin{gathered} \text { Less } \\ \text { than } 10 \end{gathered}$	$10 \text { or }$ more
All fields	1,110	1,750	470	1,500	850	560	440	630	870	970		
Male	0.6	0.4	2.0	0.6	1.2	2.1	2.1	1.9	1.1	1.3		
Female	0.6	0.4	2.0	0.6	1.2	2.1	2.1	1.9	1.1	1.3		
Science	1,070	1,710	350	1,470	810	540	440	630	780	920		
Male	0.7	0.5	2.4	0.7	1.3	2.5	2.3	2.1	1.2	1.4		
Female	0.7	0.5	2.4	0.7	1.3	2.5	2.3	2.1	1.2	1.4		
Biological, agricultural, and environmental life sciences	640	940	170	720	380	380	320	420	530	520		
Male	1.1	0.8	5.6	1.2	2.3	3.3	3.9	3.0	1.6	2.5		
Female	1.1	0.8	5.6	1.2	2.3	3.3	3.9	3.0	1.6	2.5		
Computer and information sciences	190	250	130	200	160	70	80	50	110	90		
Male	2.1	2.5	7.0	2.8	3.5	5.6	9.7	9.7	5.7	12.1		
Female	2.1	2.5	7.0	2.8	3.5	S	9.7	S	5.7	12.1		
Mathematics and statistics	250	400	150	380	240	120	110	140	140	130		
Male	2.2	1.2	7.1	1.5	3.4	8.1	5.6	9.6	4.9	6.7		
Female	2.2	1.2	7.1	1.5	3.4	8.1	S	9.6	4.9	6.7		
Physical sciences	460	630	140	590	290	150	180	250	380	350		
Male	1.4	0.9	5.8	0.9	2.8	5.4	3.7	3.5	2.5	2.5		
Female	1.4	0.9	5.8	0.9	2.8	5.4	3.7	3.5	2.5	2.5		
Psychology	400	660	190	570	280	160	230	280	340	360		
Male	1.6	1.6	5.7	2.2	3.5	8.8	5.0	5.5	2.9	3.6		
Female	1.6	1.6	5.7	2.2	3.5	8.8	5.0	5.5	2.9	3.6		
Social sciences	480	800	230	760	380	160	190	220	230	350		
Male	1.2	1.0	3.8	1.1	2.1	7.5	4.2	5.3	4.4	3.7		
Female	1.2	1.0	3.8	1.1	2.1	7.5	4.2	5.3	4.4	3.7		
Engineering	460	660	200	550	270	170	170	170	310	260		
Male	1.6	0.7	4.1	0.9	2.7	4.2	4.8	4.2	2.9	3.3		
Female	1.6	0.7	4.1	0.9	2.7	4.2	4.8	4.2	2.9	3.3		
Health	290	330	190	280	220	130	130	180	180	190		
Male	1.9	2.0	5.0	3.4	3.7	7.9	4.3	7.8	5.0	6.5		
Female	1.9	2.0	5.0	3.4	3.7	7.9	4.3	7.8	5.0	6.5		

S = suppressed for reliability or confidentiality.
NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-22. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and tenure status: 2006

Field and race/ethnicity	All employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
All fields	1,970	1,500	1,010	780	1,340
American Indian/Alaska Native	0.1	0.1	0.2	0.2	0.1
Asian	0.3	0.4	0.9	1.0	0.7
Black	0.1	0.2	0.4	0.4	0.3
Hispanic	0.1	0.2	0.3	0.4	0.3
White	0.3	0.5	1.0	1.0	0.8
Other race/ethnicity ${ }^{\text {a }}$	0.1	0.1	0.1	S	0.1
Science	1,930	1,430	960	760	1,230
American Indian/Alaska Native	0.1	0.1	0.2	0.2	0.1
Asian	0.3	0.4	0.9	1.0	0.7
Black	0.1	0.2	0.5	0.4	0.3
Hispanic	0.1	0.2	0.3	0.4	0.3
White	0.3	0.5	1.1	1.0	0.8
Other race/ethnicity ${ }^{\text {a }}$	0.1	0.1	0.1	S	0.1
Biological, agricultural, and environmental life sciences	1,070	740	510	500	730
American Indian/Alaska Native	0.1	0.3	0.3	S	0.2
Asian	0.6	0.8	1.8	2.0	1.2
Black	0.2	0.3	0.8	0.6	0.4
Hispanic	0.2	0.3	0.6	0.7	0.4
White	0.6	1.0	2.0	2.0	1.2
Other race/ethnicity ${ }^{\text {a }}$	0.1	S	S	S	S
Computer and information sciences	310	240	170	100	150
American Indian/Alaska Native	S	S	S	S	S
Asian	2.7	4.5	4.4	8.5	7.6
Black	0.6	1.3	1.1	S	S
Hispanic	0.7	1.4	1.2	S	S
White	2.7	4.3	4.5	8.4	7.7
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Mathematics and statistics	480	400	280	180	180
American Indian/Alaska Native	0.2	0.3	S	S	S
Asian	1.1	1.2	3.7	5.6	4.4
Black	0.4	0.4	1.4	S	S
Hispanic	0.5	0.8	1.0	S	1.1
White	1.2	1.5	3.9	5.8	4.5
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Physical sciences	770	630	330	300	510
American Indian/Alaska Native	0.2	0.2	S	S	0.3
Asian	0.8	1.1	2.2	2.9	1.9
Black	0.2	0.3	1.1	1.2	0.5
Hispanic	0.3	0.6	0.7	1.3	0.4
White	0.8	1.3	2.6	3.4	2.0
Other race/ethnicity ${ }^{\text {a }}$	0.1	S	S	5	S
Psychology	720	560	340	360	500
American Indian/Alaska Native	0.2	0.4	0.6	S	0.3
Asian	0.3	0.5	1.4	1.0	0.7
Black	0.5	0.9	1.5	1.1	0.9
Hispanic	0.4	0.5	1.2	1.3	0.9
White	0.8	1.1	2.8	1.9	1.5
Other race/ethnicity ${ }^{\text {a }}$	0.2	S	0.9	S	S
Social sciences	870	750	410	300	400
American Indian/Alaska Native	0.2	0.3	0.5	S	0.6

TABLE A-22. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and tenure status: 2006

Field and race/ethnicity	All employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
Asian	0.4	0.6	1.4	1.8	1.6
Black	0.3	0.4	0.9	1.0	1.2
Hispanic	0.2	0.3	0.7	0.8	0.9
White	0.6	0.8	1.8	2.1	2.2
Other race/ethnicity ${ }^{\text {a }}$	0.1	S	S	S	S
Engineering	800	610	310	230	380
American Indian/Alaska Native	0.2	0.3	S	S	S
Asian	1.2	1.5	2.9	4.6	3.0
Black	0.4	0.6	1.4	1.0	0.4
Hispanic	0.3	0.5	0.9	1.3	0.7
White	1.3	1.7	3.0	4.7	3.1
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Health	460	300	260	220	260
American Indian/Alaska Native	0.3	0.8	S	S	S
Asian	0.9	1.2	1.9	3.0	3.5
Black	0.6	1.4	1.2	1.9	1.5
Hispanic	0.4	0.6	1.0	1.8	1.0
White	1.1	2.0	2.6	3.5	3.9
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Standard errors for numbers are rounded up to nearest 10 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-23. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, primary work activity, and secondary work activity: 2006

Field and primary work activity	All employed	Secondary work activity (\%)						
		All activities	Computer applications	Management, sales administration	R\&D ${ }^{\text {a }}$	Teaching	Other	None
All fields	1,970	-	0.1	0.4	0.6	0.4	0.2	0.3
Computer applications	240	-	na	3.8	4.5	2.7	2.6	3.0
Management, sales, administration	880	-	0.3	1.4	1.4	1.1	0.9	0.5
R\&D ${ }^{\text {a }}$	1,440	-	0.2	0.6	0.8	0.7	0.3	0.4
Teaching	1,460	-	0.2	0.6	0.8	na	0.4	0.5
Other	650	-	0.4	1.5	1.4	1.5	0.4	1.8
Science	1,930	-	0.1	0.5	0.6	0.4	0.3	0.3
Computer applications	220	-	na	4.3	5.1	3.0	2.5	3.5
Management, sales, administration	760	-	0.3	1.6	1.6	1.2	1.0	0.5
R\&D ${ }^{\text {a }}$	1,280	-	0.3	0.7	0.8	0.8	0.3	0.4
Teaching	1,360	-	0.2	0.7	0.8	na	0.4	0.6
Other	620	-	0.4	1.7	1.5	1.6	0.4	1.9
Biological, agricultural, and environmental life sciences	1,070	-	0.2	0.8	0.8	0.6	0.4	0.5
Computer applications	120	-	na	8.1	9.3	4.7	S	S
Management, sales, administration	460	-	0.5	2.5	2.7	2.0	1.7	1.0
R\&D ${ }^{\text {a }}$	900	-	0.3	1.1	1.0	1.0	0.6	0.6
Teaching	540	-	0.3	1.4	1.8	na	1.0	1.1
Other	450	-	S	2.3	2.5	2.4	0.6	2.9
Computer and information sciences	310	-	1.9	2.3	3.1	2.7	1.5	1.4
Computer applications	50	-	na	S	21.7	S	S	S
Management, sales, administration	100	-	S	9.8	9.8	7.9	6.5	S
R\&D ${ }^{\text {a }}$	210	-	3.2	4.2	5.1	5.7	S	S
Teaching	260	-	3.0	3.1	4.3	na	2.4	1.7
Other	70	-	S	S	S	S	S	15.4
Mathematics and statistics	480	-	0.8	1.2	1.6	1.4	0.8	1.3
Computer applications	90	-	na	11.6	15.1	11.9	S	S
Management, sales, administration	200	-	S	5.5	5.9	6.5	S	2.2
R\&D ${ }^{\text {a }}$	340	-	1.8	1.7	2.8	3.3	S	1.3
Teaching	430	-	0.9	1.7	2.5	na	1.4	1.8
Other	110	-	S	6.9	6.6	8.1	S	11.1
Physical sciences	770	-	0.5	0.9	1.3	1.0	0.6	0.7
Computer applications	140	-	na	7.2	10.1	S	5.6	8.7
Management, sales, administration	310	-	1.4	3.2	4.1	3.3	1.6	1.3
R\&D ${ }^{\text {a }}$	600	-	1.0	1.4	1.8	1.9	0.6	0.8
Teaching	500	-	0.6	1.6	2.1	na	1.2	1.3
Other	210	-	3.4	4.4	4.4	4.0	S	5.8
Psychology	720	-	0.4	1.2	1.4	1.0	0.9	0.8
Computer applications	60	-	na	26.4	S	S	S	S
Management, sales, administration	320	-	S	4.0	3.7	3.5	3.0	1.1
R\&D ${ }^{\text {a }}$	510	-	1.0	2.0	1.9	2.5	1.4	0.9
Teaching	510	-	0.4	1.8	2.4	na	1.5	1.4
Other	340	-	S	3.4	2.8	3.2	0.9	3.3
Social sciences	870	-	0.2	1.0	1.1	0.8	0.5	0.7
Computer applications	60	-	na	18.2	18.8	S	S	S
Management, sales, administration	430	-	S	3.4	2.8	2.5	2.0	1.1
R\&D ${ }^{\text {a }}$	570	-	0.7	1.4	1.9	2.0	0.5	0.7
Teaching	740	-	0.2	1.0	1.3	na	0.8	1.0
Other	260	-	S	4.6	3.7	4.3	S	4.7

TABLE A-23. Standard errors for employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, primary work activity, and secondary work activity: 2006

Field and primary work activity	All employed	Secondary work activity (\%)						
		All activities	Computer applications	Management, sales, administration	$\mathrm{R} \& \mathrm{D}^{\text {a }}$	Teaching	Other	None
Engineering	800	-	0.6	1.0	1.6	1.3	0.5	0.9
Computer applications	130	-	na	6.3	10.2	6.5	7.1	8.8
Management, sales, administration	310	-	1.0	3.9	4.0	4.0	1.6	1.2
R\&D ${ }^{\text {a }}$	640	-	1.2	1.6	2.2	2.1	0.6	1.0
Teaching	510	-	0.9	1.8	2.7	na	1.0	1.5
Other	220	-	S	3.6	4.2	4.2	S	5.4
Health	460	-	0.4	1.8	1.9	1.5	1.3	1.1
Computer applications	S	-	na	S	S	S	S	S
Management, sales, administration	250	-	S	4.2	3.5	4.0	2.9	1.5
$R \& D^{\text {a }}$	320	-	1.2	2.9	2.7	3.3	1.5	1.6
Teaching	340	-	0.6	3.2	3.5	na	2.6	1.6
Other	160	-	S	5.5	4.4	5.7	S	6.2

na = not applicable; same work activity cannot be reported as both primary and secondary except Management, R\&D, and Other, because these categories include more than one type of work activity. $S=$ suppressed for reliability or confidentiality. $-=$ no value; standard errors are not calculated for proportions of 100%.
${ }^{\mathrm{a}}$ R\&D includes applied or basic research, design, and development.
NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and universityaffiliated research institutions. Primary and secondary work activities were self-defined by the respondent in response to the question: "On which two activities...did you work the most hours during a typical week on this job?" Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-24. Standard errors for employed doctoral scientists and engineers, by selected demographic characteristics and broad field of doctorate: 2006 (Percent distribution)

Characteristic	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Number employed	1,640	1,570	780	270	400	760	600	630	740	360
All characteristics	-	-	-	-	-	-	-	-	-	-
Sex										
Male	0.1	0.1	0.2	0.6	0.5	0.3	0.3	0.3	0.2	0.6
Female	0.1	0.1	0.2	0.6	0.5	0.3	0.3	0.3	0.2	0.6
Race/ethnicity										
American Indian/Alaska										
Native	S	S	0.1	S	0.1	0.1	0.1	0.1	0.1	0.2
Asian	0.1	0.1	0.2	1.0	0.5	0.3	0.1	0.2	0.4	0.5
Black	S	0.1	0.1	0.3	0.2	0.1	0.1	0.2	0.1	0.3
Hispanic	S	0.1	0.1	0.3	0.3	0.1	0.1	0.1	0.1	0.2
White	0.1	0.1	0.2	1.0	0.6	0.3	0.2	0.4	0.4	0.6
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	0.1	0.1	S	S
Age										
Under 35	0.2	0.2	0.3	1.3	0.7	0.4	0.4	0.4	0.4	0.7
35-39	0.2	0.2	0.4	1.6	0.9	0.5	0.5	0.5	0.5	1.0
40-44	0.2	0.2	0.4	1.7	0.9	0.5	0.5	0.5	0.5	0.9
45-49	0.2	0.2	0.4	1.6	0.9	0.4	0.5	0.6	0.5	0.9
50-54	0.2	0.2	0.4	1.4	0.8	0.4	0.6	0.6	0.5	1.2
55-59	0.2	0.2	0.4	1.3	0.9	0.4	0.6	0.6	0.4	1.2
60-64	0.2	0.2	0.3	0.6	0.9	0.4	0.5	0.6	0.4	0.9
65-75	0.2	0.2	0.3	S	0.8	0.4	0.3	0.5	0.4	0.7
Citizenship status										
U.S. citizen	0.1	0.2	0.3	1.3	0.7	0.3	0.2	0.4	0.4	0.6
Native born	0.1	0.2	0.2	0.8	0.7	0.3	0.3	0.4	0.3	0.7
Naturalized	0.2	0.2	0.3	1.4	0.8	0.4	0.3	0.4	0.6	0.6
Non-U.S. citizen	0.1	0.2	0.3	1.3	0.7	0.3	0.2	0.4	0.4	0.6
Permanent resident	0.1	0.2	0.3	1.3	0.7	0.3	0.2	0.3	0.5	0.6
Temporary resident	0.1	0.1	0.2	0.9	0.5	0.2	0.1	0.2	0.4	0.4
Years since doctorate										
5 or less	0.1	0.1	0.3	0.8	0.6	0.3	0.3	0.4	0.3	0.7
6-10	0.1	0.2	0.3	1.1	0.7	0.3	0.4	0.4	0.4	0.8
11-15	0.1	0.1	0.3	1.1	0.6	0.3	0.3	0.4	0.3	0.7
16-20	0.1	0.1	0.2	0.8	0.7	0.3	0.3	0.4	0.3	0.6
21-25	0.1	0.2	0.3	0.6	0.6	0.3	0.4	0.4	0.3	0.6
More than 25	0.2	0.2	0.3	0.5	0.9	0.4	0.4	0.6	0.4	0.8
Place of birth ${ }^{\text {b }}$										
United States	0.2	0.2	0.3	1.0	0.7	0.3	0.3	0.4	0.4	0.7
Europe	0.1	0.1	0.2	0.9	0.6	0.2	0.2	0.2	0.3	0.4
Asia	0.1	0.1	0.2	1.2	0.7	0.3	0.2	0.3	0.5	0.6
North America	0.1	0.1	0.1	0.5	0.2	0.1	0.2	0.2	0.1	0.3
Central America	S	S	0.1	S	0.2	0.1	0.1	0.1	0.1	0.1
Caribbean	S	S	0.1	S	0.2	0.1	0.1	0.1	0.1	0.2
South America	S	0.1	0.1	0.4	0.2	0.1	0.1	0.1	0.1	0.2
Africa	0.1	0.1	0.1	0.5	0.3	0.1	0.1	0.2	0.2	0.3
Oceania	0.1	0.1	0.1	0.4	0.3	0.1	0.1	0.1	0.1	0.3

- = no value; standard errors are not calculated for proportions of 100%.
$S=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{b}$ Percentages are based on persons who reported place of birth. Persons who did not specify place of birth are included in total but not shown separately.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-25. Standard errors for employed doctoral scientists and engineers, by selected demographic characteristics and (Percent distribution)

Characteristic	All employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
Number employed	1,640	1,750	1,410	1,060	880	870	620
All characteristics	-	-	-	-	-	-	-
Sex							
Male	0.1	0.1	0.1	0.5	0.7	0.9	1.1
Female	0.1	0.1	0.1	0.5	0.7	0.9	1.1
Race/ethnicity							
American Indian/Alaska Native	0.1	0.1	0.1	0.1	S	S	S
Asian	0.1	0.1	0.1	0.6	0.7	1.0	1.3
Black	0.1	0.1	0.1	0.3	0.3	0.4	0.3
Hispanic	0.1	0.1	0.1	0.3	0.3	0.4	0.4
White	0.1	0.2	0.1	0.6	0.7	1.0	1.2
Other race/ethnicity ${ }^{\text {a }}$	0.1	0.1	0.1	0.1	0.1	S	S
Age							
Under 35	0.2	0.2	0.2	0.3	0.9	0.9	1.5
35-39	0.2	0.2	0.2	0.5	1.0	1.3	1.5
40-44	0.2	0.2	0.2	0.7	0.8	1.1	1.1
45-49	0.2	0.2	0.2	0.8	0.5	0.8	0.7
50-54	0.2	0.2	0.2	0.6	0.4	0.6	0.4
55-59	0.2	0.2	0.3	0.5	0.2	0.3	0.2
60-64	0.2	0.2	0.2	0.5	0.2	0.3	0.2
65-75	0.2	0.2	0.2	0.4	0.2	0.3	S
Years since doctorate							
5 or less	0.1	0.1	0.1	0.4	0.9	1.1	1.0
6-10	0.1	0.2	0.2	0.6	0.9	1.3	0.9
11-15	0.1	0.1	0.1	0.6	0.6	1.0	0.4
16-20	0.1	0.1	0.1	0.5	0.4	0.6	0.3
21-25	0.1	0.2	0.2	0.5	0.3	0.4	S
More than 25	0.2	0.2	0.2	0.5	0.3	0.5	0.2
Place of birth ${ }^{\text {b }}$							
United States	0.2	0.2	0.1	0.1	0.1	0.2	0.2
Europe	0.1	0.1	0.1	0.5	0.6	0.9	1.0
Asia	0.1	0.2	0.1	0.6	0.8	1.2	1.2
North America	0.1	0.1	0.1	0.3	0.4	0.6	0.5
Central America	0.1	0.1	0.1	0.2	0.2	0.3	0.3
Caribbean	0.1	0.1	S	0.2	0.1	0.2	0.2
South America	0.1	0.1	0.1	0.3	0.3	0.3	0.5
Africa	0.1	0.1	0.1	0.3	0.4	0.5	0.5
Oceania	0.1	0.1	S	0.2	0.4	0.5	0.5

- = no value; standard errors are not calculated for proportions of 100%.
$S=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{b}$ Percentages are based on persons who reported place of birth. Persons who did not specify place of birth are included in total but not shown separately.

NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-26. Standard errors for employed doctoral scientists and engineers, by selected demographic and employment-related characteristics and sector of employment: 2006

Characteristic	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text { }}$	Private not-for-profit	Federal government	State and local government	$\begin{array}{r} \text { Self- } \\ \text { employed }^{\text {d }} \end{array}$	Other ${ }^{\text {e }}$
Number employed	1,640	1,970	700	1,630	990	1,020	670	1,010	190
All characteristics	-	-	-	-	-	-	-	-	-
Sex									
Male	0.1	0.4	1.7	0.4	1.3	1.1	1.7	1.2	5.8
Female	0.1	0.4	1.7	0.4	1.3	1.1	1.7	1.2	5.8
Race/ethnicity									
American Indian/Alaska Native	0.1	0.1	0.2	0.1	0.2	0.2	0.4	0.2	S
Asian	0.1	0.3	0.7	0.4	0.9	0.8	1.3	0.6	5.0
Black	0.1	0.1	0.8	0.1	0.3	0.4	0.7	0.3	S
Hispanic	0.1	0.1	0.6	0.1	0.3	0.3	0.5	0.4	2.2
White	0.1	0.3	1.2	0.4	1.0	0.9	1.5	0.8	5.8
Other race/ethnicity ${ }^{\dagger}$	0.1	0.1	S	0.1	0.1	0.1	S	S	S
Age									
Under 35	0.2	0.3	0.7	0.3	0.9	0.7	0.9	0.3	2.3
35-39	0.2	0.3	1.0	0.4	0.9	0.8	1.0	0.6	6.0
40-44	0.2	0.3	1.0	0.4	0.9	0.9	1.3	0.7	4.5
45-49	0.2	0.3	1.3	0.4	0.8	0.9	1.1	0.8	3.8
50-54	0.2	0.4	1.4	0.4	1.0	0.9	1.4	0.9	5.1
55-59	0.2	0.3	1.4	0.4	0.9	0.9	1.4	1.1	5.5
60-64	0.2	0.3	1.0	0.4	0.9	1.0	1.1	1.0	6.7
65-75	0.2	0.2	1.2	0.3	0.6	0.6	0.9	0.9	S
Citizenship status									
U.S. citizen	0.1	0.3	0.6	0.4	0.7	0.5	0.8	0.4	6.8
Native born	0.1	0.3	1.0	0.4	1.0	0.9	1.4	0.8	6.8
Naturalized	0.2	0.3	1.1	0.4	0.8	0.9	1.3	0.7	4.2
Non-U.S. citizen	0.1	0.3	0.6	0.4	0.7	0.5	0.8	0.4	6.8
Permanent resident	0.1	0.2	0.5	0.3	0.5	0.3	0.6	0.3	4.3
Temporary resident	0.1	0.2	0.4	0.2	0.5	0.3	0.6	0.1	6.2
Years since doctorate									
5 or less	0.1	0.3	1.1	0.3	1.1	0.9	1.4	0.6	4.3
6-10	0.1	0.3	1.2	0.4	1.0	0.8	1.4	0.7	5.2
11-15	0.1	0.3	1.2	0.3	0.9	0.7	1.3	0.8	5.7
16-20	0.1	0.3	1.2	0.3	0.9	0.8	1.2	0.7	3.3
21-25	0.1	0.3	1.1	0.3	0.8	0.7	1.4	0.8	4.0
More than 25	0.2	0.3	1.5	0.4	1.1	1.0	1.5	1.2	7.4
Primary or secondary work activity ${ }^{9}$									
Any R\&D	0.3	0.5	1.4	0.5	1.3	1.1	1.8	1.1	5.6
Applied research	0.3	0.5	1.0	0.6	1.2	1.2	1.9	1.0	6.5

TABLE A-26. Standard errors for employed doctoral scientists and engineers, by selected demographic and employment-related characteristics and sector of employment: 2006 (Percent distribution)

Characteristic	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\circ}$	Private not-for-profit	Federal government	State and local government	$\begin{array}{r} \text { Self- } \\ \text { employed }^{\text {d }} \end{array}$	Other ${ }^{\text {e }}$
Basic research	0.2	0.4	0.7	0.3	1.1	1.0	1.2	0.5	4.1
Design	0.1	0.1	0.5	0.4	0.6	0.5	0.9	0.6	S
Development	0.2	0.2	0.7	0.5	0.8	0.8	0.9	0.8	4.2
Computer applications	0.1	0.2	0.6	0.4	0.7	0.7	1.3	0.5	2.5
Management, sales, administration	0.3	0.4	1.5	0.6	1.3	1.4	1.8	1.2	7.0
Professional services	0.2	0.3	1.3	0.4	1.3	0.9	1.5	1.2	3.4
Teaching	0.3	0.5	1.5	0.2	0.6	0.5	0.8	0.7	S
Other activities	0.2	0.2	1.2	0.3	0.6	0.8	0.9	0.7	6.6

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.
${ }^{\text {a }} 4$-year educational institution includes 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institution includes 2 -year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\mathrm{c}}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
${ }^{f}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race
${ }^{9}$ Detail exceeds 100% due to multiple responses.
NOTE: Standard errors for numbers are rounded up to nearest 10 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-27. Standard errors for employed doctoral scientists and engineers, by selected demographic and employment-related characteristics, race/ethnicity, and sex: 2006

Characteristic	All employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{a}$		
	Total	Male	Female																		
Number employed	1,640	1,320	880	160	130	110	800	690	430	310	260	160	310	260	170	1,390	1,220	710	100	80	60
All characteristics	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Age																					
Under 35	0.2	0.2	0.3	1.3	1.5	2.0	0.5	0.6	1.0	0.7	0.8	1.1	0.8	0.9	1.4	0.2	0.2	0.3	5.7	7.1	9.5
35-39	0.2	0.2	0.4	2.2	2.3	3.9	0.6	0.7	1.1	0.9	1.2	1.6	0.9	1.1	1.6	0.2	0.2	0.4	3.6	5.0	S
40-44	0.2	0.2	0.3	2.0	2.6	4.1	0.6	0.7	1.1	1.1	1.4	1.6	0.9	1.3	1.6	0.2	0.2	0.4	4.9	4.5	9.7
45-49	0.2	0.2	0.4	2.5	3.4	3.2	0.6	0.7	1.0	1.1	1.6	1.5	1.1	1.5	1.5	0.2	0.3	0.4	4.1	5.8	S
50-54	0.2	0.2	0.4	2.9	3.4	5.4	0.5	0.5	0.7	1.2	1.6	1.6	0.9	1.1	1.5	0.2	0.3	0.5	4.0	5.9	S
55-59	0.2	0.2	0.3	2.7	3.4	4.5	0.4	0.5	0.6	1.2	1.7	1.5	0.8	0.9	1.4	0.3	0.3	0.4	4.1	6.3	S
60-64	0.2	0.2	0.3	2.5	3.5	2.6	0.3	0.4	0.4	0.8	1.2	1.1	0.8	1.0	1.0	0.2	0.3	0.3	4.7	6.9	S
65-75	0.2	0.2	0.2	2.8	3.6	3.2	0.3	0.4	0.4	0.7	1.0	0.7	0.8	1.3	0.6	0.2	0.2	0.3	S	S	S
Years since doctorate																					
5 or less	0.1	0.1	0.3	1.9	2.4	3.2	0.4	0.4	0.8	0.9	1.3	1.3	0.9	1.1	1.6	0.1	0.1	0.3	6.3	8.3	10.1
6-10	0.1	0.2	0.3	2.9	3.2	4.4	0.5	0.5	0.9	1.0	1.5	1.6	1.2	1.5	2.0	0.2	0.2	0.3	4.2	4.4	9.2
11-15	0.1	0.2	0.3	2.8	3.4	4.2	0.5	0.5	1.0	1.1	1.5	1.5	1.1	1.4	1.8	0.1	0.2	0.3	5.2	6.6	9.5
16-20	0.1	0.1	0.3	2.4	3.1	3.9	0.3	0.4	0.6	1.0	1.4	1.5	1.1	1.3	1.7	0.1	0.2	0.3	S	S	S
21-25	0.1	0.2	0.2	2.3	2.7	4.3	0.3	0.4	0.4	0.8	1.2	1.1	0.6	0.9	1.0	0.2	0.2	0.3	4.0	6.0	S
More than 25	0.2	0.2	0.3	3.2	4.3	3.7	0.4	0.5	0.6	0.9	1.5	1.0	1.0	1.6	0.7	0.2	0.2	0.3	4.9	7.3	S
Citizenship status																					
U.S. citizen	0.1	0.2	0.2	0.2	-	0.7	0.6	0.8	1.3	0.9	1.4	0.7	0.9	1.2	1.4	0.1	0.1	0.2	2.3	2.8	3.9
Native born	0.1	0.2	0.3	1.0	1.4	0.7	0.2	0.3	0.5	0.9	1.2	1.1	0.9	1.2	1.2	0.1	0.2	0.2	4.8	6.5	7.5
Naturalized	0.2	0.2	0.3	0.9	1.4	S	0.6	0.8	1.3	1.1	1.5	1.2	1.2	1.6	1.5	0.1	0.2	0.2	4.7	6.5	6.6
Non-U.S. citizen	0.1	0.2	0.2	S	S	S	0.6	0.8	1.3	0.9	1.4	0.7	0.9	1.2	1.4	0.1	0.1	0.2	2.3	S	S
Permanent resident	0.1	0.2	0.2	S	S	S	0.7	0.7	1.3	0.9	1.4	0.7	0.9	1.2	1.2	0.1	0.1	0.2	S	S	S
Temporary resident	0.1	0.1	0.2	S	S	S	0.5	0.5	0.9	0.3	0.6	0.3	0.5	0.7	0.6	0.1	0.1	0.1	S	S	S
Employer location																					
New England	0.2	0.2	0.3	1.5	1.7	2.8	0.4	0.5	0.8	0.6	0.8	0.8	0.6	0.9	1.1	0.2	0.2	0.4	4.4	4.2	9.8
Middle Atlantic	0.2	0.3	0.4	2.3	2.9	3.5	0.5	0.7	1.1	1.1	1.4	1.5	1.0	1.3	1.6	0.3	0.3	0.5	4.0	S	7.9
East North Central	0.2	0.3	0.4	2.6	3.0	4.7	0.5	0.5	1.0	0.9	1.3	1.4	0.8	1.1	1.3	0.2	0.3	0.5	4.2	6.1	S
West North Central	0.2	0.2	0.3	1.8	2.4	2.6	0.3	0.4	0.6	0.6	1.0	0.7	0.5	0.8	0.7	0.2	0.2	0.3	3.9	S	S
South Atlantic	0.2	0.3	0.5	2.6	3.3	4.7	0.6	0.7	1.2	1.5	2.1	2.3	1.1	1.5	1.7	0.3	0.3	0.5	4.4	5.9	7.6
East South Central	0.1	0.1	0.3	2.0	2.8	2.7	0.3	0.3	0.4	0.7	1.1	0.8	0.5	0.7	0.4	0.1	0.2	0.3	S	S	S
West South Central	0.2	0.2	0.3	2.7	3.7	3.7	0.4	0.5	0.8	0.9	1.4	1.5	0.9	1.2	1.3	0.2	0.3	0.3	6.1	8.3	S
Mountain	0.2	0.2	0.3	2.1	2.7	3.1	0.3	0.4	0.6	0.6	0.9	0.5	0.7	0.9	1.1	0.2	0.2	0.3	S	S	S
Pacific	0.2	0.3	0.5	2.7	3.8	3.6	0.7	0.9	1.4	1.0	1.2	1.5	1.2	1.5	1.6	0.2	0.3	0.5	4.5	5.5	7.7
U.S. territories and other areas	0.1	0.1	0.1	S	S	S	0.1	0.1	S	S	S	S	0.8	1.0	1.3	0.1	0.1	0.1	S	S	S
Sector of employment																					
4-year educational institutions ${ }^{\text {b }}$	0.3	0.3	0.6	3.9	4.8	5.7	0.7	0.8	1.4	1.5	2.2	2.3	1.3	1.7	2.0	0.4	0.4	0.8	6.5	8.1	10.5

TABLE A-27. Standard errors for employed doctoral scientists and engineers, by selected demographic and employment-related characteristics, race/ethnicity, and sex: 2006 (Percent distribution)

Characteristic	All employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{2}$		
	Total	Male	Female	Total	Male Female		Total	Male	Female	Total	Male Female		Total	Male Female		Total	Male	Female	Total	Male Female	
Other educational																					
institutions ${ }^{\text {c }}$	0.1	0.1	0.2	1.1	S	2.5	0.1	0.2	0.4	0.9	1.2	1.1	0.7	0.7	1.5	0.1	0.1	0.3	S	S	S
Private for-profit ${ }^{\text {d }}$	0.3	0.3	0.5	2.9	4.2	4.0	0.7	0.9	1.3	1.1	1.7	1.6	1.1	1.6	1.4	0.3	0.4	0.5	6.0	7.2	10.3
Private not-for-profit	0.2	0.2	0.3	1.4	1.6	2.9	0.4	0.4	0.7	0.6	0.8	1.1	0.6	0.8	1.1	0.2	0.2	0.4	2.3	S	S
Federal government	0.2	0.2	0.3	1.6	1.9	2.9	0.3	0.4	0.6	0.7	1.0	1.1	0.6	0.8	0.9	0.2	0.2	0.3	3.0	4.2	S
State and local government	0.1	0.1	0.2	1.9	2.6	2.4	0.2	0.3	0.5	0.7	0.9	1.2	0.5	0.6	0.8	0.1	0.1	0.2	S	S	S
Self-employed ${ }^{\text {e }}$	0.2	0.2	0.3	1.9	2.4	3.5	0.2	0.3	0.5	0.6	0.8	0.7	0.8	0.9	1.7	0.2	0.2	0.4	S	S	S
Other ${ }^{\dagger}$	0.1	0.1	0.1	S	S	S	0.1	0.1	S	S	S	S	0.2	S	S	0.1	0.1	0.1	S	S	S
Primary or secondary work activity ${ }^{9}$																					
Any R\&D	0.3	0.4	0.5	3.6	4.6	5.7	0.7	0.8	1.3	1.3	1.9	1.9	1.4	1.8	2.1	0.4	0.4	0.6	6.7	8.9	11.0
Applied research	0.3	0.4	0.5	3.9	5.4	4.7	0.8	1.0	1.5	1.3	1.9	1.9	1.5	2.0	2.1	0.3	0.4	0.6	6.0	8.4	8.9
Basic research	0.2	0.3	0.4	3.0	4.0	5.0	0.6	0.8	1.3	1.1	1.6	1.5	1.2	1.7	1.5	0.3	0.3	0.5	5.3	6.1	9.4
Design	0.1	0.2	0.2	1.7	2.5	S	0.5	0.6	0.6	0.5	0.7	0.4	0.7	1.1	0.6	0.2	0.2	0.2	S	S	S
Development	0.2	0.3	0.3	2.4	3.2	3.6	0.6	0.8	1.1	0.9	1.4	1.2	0.8	1.2	1.4	0.2	0.3	0.4	3.1	4.6	S
Computer applications	0.1	0.2	0.2	1.4	2.0	S	0.5	0.6	0.8	0.5	0.8	0.6	0.6	0.9	0.5	0.2	0.2	0.2	3.9	5.9	S
Management, sales, administration	0.3	0.4	0.5	4.1	5.3	6.4	0.7	0.8	1.5	1.4	1.9	2.2	1.3	1.7	2.1	0.4	0.5	0.6	5.9	7.8	9.9
Professional services	0.2	0.3	0.4	3.2	3.9	5.2	0.4	0.5	0.9	1.1	1.2	1.9	1.0	1.2	1.9	0.2	0.3	0.4	6.3	8.8	10.2
Teaching	0.3	0.3	0.5	3.2	4.0	4.6	0.6	0.7	1.1	1.4	2.1	2.3	1.2	1.6	2.1	0.3	0.4	0.6	5.7	6.4	10.2
Other activities	0.2	0.2	0.3	1.6	2.0	3.2	0.5	0.5	0.8	0.8	1.2	1.1	0.9	1.2	1.1	0.2	0.2	0.4	S	S	S
Federal support																					
Receiving support	0.3	0.3	0.5	3.1	4.1	5.1	0.7	0.9	1.4	1.3	2.0	1.8	1.3	1.7	1.8	0.3	0.4	0.6	6.4	9.0	10.2
Not receiving support	0.3	0.3	0.5	3.1	4.1	5.1	0.7	0.9	1.4	1.3	2.0	1.8	1.3	1.7	1.8	0.3	0.4	0.6	6.4	9.0	10.2
Degree - job relationship																					
Closely related	0.3	0.3	0.5	2.9	3.7	5.3	0.9	1.0	1.4	1.4	1.8	2.1	1.4	1.9	1.9	0.4	0.4	0.6	6.5	8.2	9.7
Somewhat related	0.3	0.3	0.5	2.6	3.3	5.2	0.8	0.9	1.3	1.3	1.6	1.9	1.3	1.7	1.8	0.4	0.4	0.6	4.8	7.0	S
Not related	0.2	0.2	0.3	1.8	2.5	3.6	0.4	0.5	0.8	0.8	1.0	1.3	0.8	1.1	0.8	0.2	0.3	0.3	4.9	5.9	9.4

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institution includes 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\text {c }}$ Other educational institution includes 2 -year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{d}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
${ }^{9}$ Detail exceeds 100% due to multiple responses.
NOTES: Primary and secondary work activities were self-defined by the respondent in response to the question: "On which two activities...did you work the most hours during a typical week on this job?" Standard errors for numbers are rounded up to nearest 10 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-28. Standard errors for employed doctoral scientists and engineers, by selected demographic and employment-related characteristics and primary or secondary work activity: 2006 (Percent distribution)

Characteristic	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Number employed	1,640	2,190	1,920	1,570	940	1,280	910	2,100	1,350	1,840	1,040
All characteristics	-	-	-	-	-	-	-	-	-	-	-
Sex											
Male	0.1	0.2	0.4	0.5	0.8	0.6	0.7	0.4	0.6	0.4	0.9
Female	0.1	0.2	0.4	0.5	0.8	0.6	0.7	0.4	0.6	0.4	0.9
Race/ethnicity											
American Indian/Alaska Native	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Asian	0.1	0.2	0.4	0.4	1.0	0.7	1.0	0.3	0.4	0.3	0.9
Black	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.3
Hispanic	0.1	0.1	0.1	0.2	0.3	0.2	0.2	0.1	0.2	0.1	0.3
White	0.1	0.2	0.4	0.5	1.1	0.7	1.0	0.3	0.5	0.4	0.9
Other race/ethnicity ${ }^{\text {a }}$	0.1	0.1	0.1	0.1	S	0.1	0.1	0.1	0.1	0.1	S
Age											
Under 35	0.2	0.2	0.3	0.5	0.9	0.5	0.7	0.2	0.4	0.3	0.8
35-39	0.2	0.3	0.4	0.5	1.0	0.6	0.8	0.3	0.4	0.3	0.6
40-44	0.2	0.3	0.4	0.4	1.0	0.6	0.8	0.3	0.5	0.4	0.8
45-49	0.2	0.3	0.4	0.4	0.9	0.6	0.8	0.4	0.5	0.4	0.7
50-54	0.2	0.2	0.4	0.4	0.9	0.6	0.8	0.3	0.6	0.4	0.7
55-59	0.2	0.2	0.4	0.3	0.9	0.6	0.8	0.4	0.7	0.4	0.8
60-64	0.2	0.2	0.3	0.3	0.8	0.5	0.6	0.3	0.5	0.4	0.7
65-75	0.2	0.2	0.2	0.3	0.7	0.4	0.5	0.3	0.4	0.3	0.6
Years since doctorate											
5 or less	0.1	0.2	0.4	0.5	0.8	0.6	0.8	0.3	0.5	0.3	1.0
6-10	0.1	0.2	0.3	0.4	1.0	0.6	0.8	0.3	0.5	0.4	0.7
11-15	0.1	0.2	0.4	0.4	1.0	0.6	0.8	0.3	0.5	0.3	0.8
16-20	0.1	0.2	0.3	0.4	0.8	0.5	0.6	0.3	0.5	0.4	0.8
21-25	0.1	0.2	0.3	0.3	0.7	0.5	0.7	0.2	0.4	0.3	0.7
More than 25	0.2	0.3	0.4	0.5	1.0	0.7	0.8	0.4	0.6	0.4	0.9
Citizenship status											
U.S. citizen	0.1	0.2	0.3	0.4	1.0	0.5	0.9	0.2	0.3	0.3	0.8
Native born	0.1	0.2	0.4	0.5	1.1	0.7	1.0	0.4	0.5	0.4	1.0
Naturalized	0.2	0.2	0.4	0.4	1.1	0.6	0.9	0.3	0.5	0.4	0.8
Non-U.S. citizen	0.1	0.2	0.3	0.4	1.0	0.5	0.9	0.2	0.3	0.3	0.8
Permanent resident	0.1	0.2	0.3	0.4	0.8	0.5	0.8	0.2	0.3	0.2	0.7
Temporary resident	0.1	0.1	0.2	0.3	0.5	0.4	0.6	0.1	0.2	0.2	0.5
Sector of employment											
4 -year educational institutions ${ }^{\text {b }}$	0.3	0.3	0.6	0.6	0.8	0.5	0.8	0.4	0.7	0.4	1.1

TABLE A-28. Standard errors for employed doctoral scientists and engineers, by selected demographic and employment-related characteristics and primary or secondary work activity: 2006 (Percent distribution)

Characteristic	Research and development							Management, sales, administration	Professional services	Teaching	Other
	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Any R\&D	Applied research	Basic research	Design	Development	Computer applications				
Other educational institutions ${ }^{\text {c }}$	0.1	0.1	0.1	0.1	0.2	0.2	0.3	0.2	0.3	0.3	0.5
Private for-profit ${ }^{\text {d }}$	0.3	0.3	0.5	0.3	1.2	0.7	1.0	0.5	0.7	0.2	1.0
Private non-profit	0.2	0.2	0.3	0.3	0.6	0.3	0.6	0.3	0.5	0.1	0.5
Federal government	0.2	0.2	0.3	0.3	0.5	0.4	0.6	0.3	0.4	0.1	0.6
State and local government	0.1	0.1	0.2	0.2	0.4	0.2	0.5	0.2	0.3	0.1	0.4
Self-employed ${ }^{\text {e }}$	0.1	0.1	0.2	0.1	0.6	0.4	0.5	0.2	0.6	0.2	0.6
Other sector ${ }^{\dagger}$	0.2	0.1	0.1	0.1	S	0.1	0.1	0.1	0.1	0.1	0.2
Employer location											
New England	0.2	0.2	0.3	0.3	0.7	0.5	0.7	0.2	0.4	0.3	0.7
Middle Atlantic	0.2	0.3	0.4	0.5	0.9	0.6	0.8	0.3	0.7	0.5	0.7
East North Central	0.2	0.3	0.4	0.5	0.8	0.6	0.7	0.3	0.5	0.4	0.8
West North Central	0.2	0.2	0.3	0.3	0.5	0.3	0.4	0.2	0.4	0.3	0.6
South Atlantic	0.2	0.3	0.4	0.5	1.0	0.5	0.9	0.4	0.6	0.5	1.0
East South Central	0.1	0.2	0.2	0.2	0.4	0.3	0.4	0.2	0.3	0.3	0.4
West South Central	0.2	0.2	0.3	0.3	0.8	0.5	0.7	0.3	0.5	0.3	0.6
Mountain	0.2	0.2	0.3	0.3	0.7	0.4	0.5	0.2	0.4	0.3	0.5
Pacific	0.2	0.3	0.5	0.4	1.2	0.7	1.0	0.4	0.7	0.4	0.9
U.S. territories and other areas	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2

$\mathrm{S}=$ suppressed for reliability or confidentiality.
$-=$ no value; standard errors are not calculated for proportions of 100%
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institution includes 4 -year colleges or universities, medical schools (including university-afiliated hospitals or medical centers), and university-afiliated research institutions.
${ }^{\text {c }}$ Other educational institution includes 2 -year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{d}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business
${ }^{\dagger}$ Includes employers not broken out separately.
NOTES: Primary and secondary work activities were self-defined by the respondent in response to the question: "On which two activities...did you work the most hours during a typical week on this job?" Standard errors for numbers are rounded up to nearest 10 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-29. Standard errors for doctoral scientists and engineers, by occupation and employment status: 2006

Occupation	All fields	Employed			Unemployed	Retired	Not employed, not seeking work
		Total	Full time	Part time			
All occupations	1,320	1,640	1,840	1,310	430	1,170	530
Science occupations	1,880	1,890	1,870	980	310	880	420
Biological, agricultural, or other life scientist	1,090	1,120	980	460	190	470	210
Agricultural/food scientist	440	410	400	110	50	180	60
Biochemist/biophysicist	600	580	570	130	90	180	100
Biological scientist	780	730	710	200	100	240	130
Forestry/conservation scientist	200	180	170	70	50	50	S
Medical scientist	850	860	800	230	110	220	120
Postsecondary teacher, agricultural/other natural sciences	340	320	310	80	S	140	S
Postsecondary teacher, biological sciences	710	710	640	250	60	230	80
Other biological/agricultura/life scientist	340	320	300	90	50	110	50
Computer and information scientist	840	770	740	260	110	330	100
Computer/information scientist	830	750	690	220	110	280	90
Postsecondary teacher, computer science	360	360	370	120	50	150	S
Mathematical scientist	550	500	530	240	50	240	90
Mathematical scientist	490	470	450	130	30	160	50
Postsecondary teacher, mathematics/statistics	480	460	430	210	S	180	80
Physical scientist	1,020	1,060	1,010	370	200	460	180
Chemist, except biochemist	630	600	560	190	130	290	110
Earth/atmospheric/ocean scientist	430	400	420	140	60	160	50
Physicist/astronomer	540	570	540	160	80	190	90
Postsecondary teacher, chemistry	520	470	420	170	90	230	70
Postsecondary teacher, physics	400	390	380	130	S	180	S
Postsecondary teacher, other physical sciences	350	350	350	120	S	140	50
Other physical scientist	260	240	240	80	S	70	S
Psychologist	860	860	860	610	120	370	200
Psychologist	860	850	780	540	110	340	170
Postsecondary teacher, psychology	640	590	580	240	S	200	110
Social scientist	830	830	850	370	150	350	150
Economist	430	400	390	140	110	160	50
Political scientist	230	210	210	80	S	90	S
Postsecondary teacher, economics	420	390	380	150	40	140	60
Postsecondary teacher, political science	370	350	340	190	S	160	40
Postsecondary teacher, sociology	380	350	340	120	S	130	70
Postsecondary teacher, other social sciences	420	410	410	150	50	160	50
Sociologist/anthropologist	310	300	300	100	40	110	40
Other social scientist	400	380	360	140	40	90	70
Engineering occupations	1,040	1,000	1,020	380	180	480	150
Aerospace/aeronautical/astronautical engineer	360	330	310	120	S	150	S
Chemical engineer	430	390	380	120	50	170	50
Civil/architectural/sanitary engineer	330	310	290	110	S	120	S
Electrical engineer	610	560	550	170	80	260	50
Materials/metallurgical engineer	190	170	160	60	S	60	S
Mechanical engineer	470	410	380	160	70	190	40
Postsecondary teacher, engineering	700	660	620	180	60	260	80
Other engineer	670	600	600	190	130	270	80
Science and engineering-related occupations	1,140	1,110	1,070	350	170	430	160
Health occupation, except postsecondary teacher	720	720	650	230	90	200	100
Postsecondary teacher, health and related sciences	610	600	600	180	70	200	90
SEH manager	790	740	730	120	110	340	60
SEH precollege teacher	360	310	280	120	70	90	50
SEH technician/technologist	330	290	280	70	50	120	40

TABLE A-29. Standard errors for doctoral scientists and engineers, by occupation and employment status: 2006

Occupation	All fields	Employed			Unemployed	Retired	Not employed, not seeking work
		Total	Full time	Part time			
Other SEH-related occupation	100	90	90	S	S	50	S
Non-science and engineering occupations	1,500	1,350	1,290	590	210	570	250
Arts/humanities-related occupation	430	390	330	220	50	170	100
Management-related occupation	830	770	720	290	110	260	110
Non-SEH manager	1,110	1,020	1,010	190	110	420	80
Non-SEH postsecondary teacher	480	480	420	210	70	210	70
Non-SEH precollege/other teacher	310	260	190	170	S	130	80
Sales/marketing occupation	530	450	410	220	80	140	110
Social service-related occupation	330	320	260	170	S	110	70
Other non-SEH occupation	590	520	460	210	100	190	100

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTES: If respondent was not employed during survey reference period, occupation when last employed was reported. Excludes 360 individuals who reported never having worked so could not be classified by occupation. Full time and part time employment status is for the principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job, but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job. Standard errors are rounded up to nearest 10 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-30. Standard errors for doctoral scientists and engineers, by broad occupation, employment status, and sex: 2006

Employment status and occupation	All	Male	Female
All occupations	1,320	1,070	630
Employed full time	1,840	1,490	1,050
Employed part time	1,310	980	810
Unemployed	430	390	250
Retired	1,170	1,030	600
Not employed, not seeking work	530	270	430
Science occupations	1,880	1,660	950
Employed full time	1,870	1,610	980
Employed part time	980	710	670
Unemployed	310	270	180
Retired	880	790	470
Not employed, not seeking work	420	190	360
Biological, agricultural, or other life scientist	1,090	950	640
Employed full time	980	890	580
Employed part time	460	290	320
Unemployed	190	150	130
Retired	470	400	240
Not employed, not seeking work	210	90	200
Computer and information scientist	840	810	310
Employed full time	740	720	290
Employed part time	260	230	100
Unemployed	110	100	80
Retired	330	310	80
Not employed, not seeking work	100	70	60
Mathematical scientist	550	510	270
Employed full time	530	490	280
Employed part time	240	230	100
Unemployed	50	40	40
Retired	240	230	90
Not employed, not seeking work	90	60	70
Physical scientist	1,020	940	400
Employed full time	1,010	950	390
Employed part time	370	330	170
Unemployed	200	160	80
Retired	460	460	140
Not employed, not seeking work	180	110	150
Psychologist	860	540	620
Employed full time	860	580	570
Employed part time	610	370	500
Unemployed	120	80	80
Retired	370	230	290
Not employed, not seeking work	200	50	200
Social scientist	830	680	450
Employed full time	850	690	440
Employed part time	370	300	220
Unemployed	150	130	50
Retired	350	300	170
Not employed, not seeking work	150	80	120
Engineering occupations	1,040	1,000	320
Employed full time	1,020	1,000	310
Employed part time	380	380	120
Unemployed	180	170	50
Retired	480	470	90

TABLE A-30. Standard errors for doctoral scientists and engineers, by broad occupation, employment status, and sex: 2006

Employment status and occupation	All	Male	Female
Not employed, not seeking work	150	120	100
Science and engineering-related occupations	1,140	920	620
Employed full time	1,070	840	580
Employed part time	350	240	240
Unemployed	170	130	120
Retired	430	390	190
Not employed, not seeking work	160	80	150
Non-science and engineering occupations	1,500	1,400	710
Employed full time	1,290	1,190	640
Employed part time	590	450	390
Unemployed, seeking work	210	170	120
Unemployed	570	500	260
Not employed, not seeking work	250	130	210

NOTES: If respondent was not employed during survey reference period, occupation when last employed was reported. Excludes 360 individuals who reported never having worked so could not be classified by occupation. Full time and part time employment status is for the principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job, but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job. Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-31. Standard errors for doctoral scientists and engineers, by broad occupation, employment status, and race/ethnicity: 2006

Employment status and occupation	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{2}$
All occupations	1,320	140	790	300	310	940	110
Employed full time	1,840	160	820	300	300	1,530	90
Employed part time	1,310	110	360	180	170	1,210	40
Unemployed	430	S	170	80	60	400	S
Retired	1,170	110	400	130	130	1,110	50
Not employed, not seeking work	530	30	200	80	90	460	40
Science occupations	1,880	170	860	330	320	1,680	100
Employed full time	1,870	140	810	310	300	1,690	90
Employed part time	980	90	280	160	160	910	S
Unemployed	310	S	130	40	50	290	S
Retired	880	100	290	100	100	800	40
Not employed, not seeking work	420	S	130	70	80	370	S
Biological, agricultural, or other life scientist	1,090	120	510	180	170	1,030	70
Employed full time	980	120	460	150	170	930	50
Employed part time	460	40	150	50	70	420	S
Unemployed	190	S	90	S	30	170	S
Retired	470	S	140	40	60	450	40
Not employed, not seeking work	210	S	80	50	40	190	S
Computer and information scientist	840	60	460	90	90	680	S
Employed full time	740	40	450	80	90	590	S
Employed part time	260	S	100	S	40	230	S
Unemployed	110	S	70	S	S	100	S
Retired	330	S	120	S	S	290	S
Not employed, not seeking work	100	S	70	S	S	60	S
Mathematical scientist	550	S	300	90	100	510	S
Employed full time	530	S	290	70	100	490	S
Employed part time	240	S	100	60	40	220	S
Unemployed	50	S	S	S	S	40	S
Retired	240	S	70	S	S	230	S
Not employed, not seeking work	90	S	S	S	S	90	S
Physical scientist	1,020	90	480	130	140	850	40
Employed full time	1,010	80	460	130	140	850	40
Employed part time	370	S	160	50	60	360	S
Unemployed	200	S	70	S	S	180	S
Retired	460	60	170	S	50	460	S
Not employed, not seeking work	180	S	70	S	50	140	S
Psychologist	860	90	140	160	150	820	60
Employed full time	860	80	140	180	150	860	60
Employed part time	610	60	60	110	120	590	S
Unemployed	120	S	S	S	S	120	S
Retired	370	50	S	60	60	350	S
Not employed, not seeking work	200	S	50	40	50	190	S
Social scientist	830	100	250	180	120	780	50
Employed full time	850	100	230	170	120	770	40
Employed part time	370	40	90	100	50	360	S
Unemployed	150	S	S	S	S	140	S
Retired	350	50	80	60	50	340	S
Not employed, not seeking work	150	S	30	30	S	140	S
Engineering occupations	1,040	90	670	130	130	830	S
Employed full time	1,020	90	630	120	130	790	S
Employed part time	380	S	160	40	20	320	S
Unemployed	180	S	80	S	S	150	S

TABLE A-31. Standard errors for doctoral scientists and engineers, by broad occupation, employment status, and race/ethnicity: 2006

	American Indian/						
Employment status and occupation	Total	Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity
Retired	480	S	210	S	70	420	S
Not employed, not seeking work	150	S	90	S	S	110	S
Science and engineering-related occupations	1,140	100	500	210	170	1,010	60
Employed full time	1,070	90	490	200	160	990	60
Employed part time	350	S	110	70	50	310	S
Unemployed	170	S	60	60	S	160	S
Retired	430	S	150	40	S	400	S
Not employed, not seeking work	160	S	100	S	30	140	S
Non-science and engineering occupations	1,500	150	570	230	190	1,440	60
Employed full time	1,290	130	530	220	170	1,260	50
Employed part time	590	50	180	100	70	540	S
Unemployed	210	S	90	40	S	190	S
Retired	570	150	70	70	580	S	
Not employed, not seeking work	250	S	90	S	50	230	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: If respondent was not employed during survey reference period, occupation when last employed was reported. Race/ethnicity data are for all doctorate recipients, including temporary residents. Excludes 360 individuals who reported never having worked so could not be classified by occupation. Full time and part time employment status is for principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job, but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job. Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-32. Standard errors for selected employment characteristics of doctoral scientists and engineers, by occupation: 2006 (Standard error of the rate per 100)

Occupation	Unemployment rate	Involuntarily-out-of-field rate	Labor force participation rate
All occupations	0.1	0.1	0.2
Science occupations	0.1	0.1	0.2
Biological, agricultural, or other life scientist	0.2	0.1	0.4
Agricultural/food scientist	0.5	0.4	1.6
Biochemist/biophysicist	0.6	0.2	1.2
Biological scientist	0.5	0.4	1.0
Forestry/conservation scientist	2.3	S	2.5
Medical scientist	0.3	0.3	0.6
Postsecondary teacher, agricultural/other natural sciences	S	S	2.5
Postsecondary teacher, biological sciences	0.2	S	0.9
Other biological/agricultural/life scientist	1.0	1.0	1.9
Computer and information scientist	0.3	0.8	0.9
Computer/information scientist	0.4	1.0	0.9
Postsecondary teacher, computer science	0.6	1.0	1.8
Mathematical scientist	0.2	0.6	0.9
Mathematical scientist	0.3	1.2	1.4
Postsecondary teacher, mathematics/statistics	S	0.4	1.2
Physical scientist	0.2	0.2	0.6
Chemist, except biochemist	0.5	0.4	1.1
Earth/atmospheric/ocean scientist	0.6	0.5	1.3
Physicist/astronomer	0.5	0.8	1.4
Postsecondary teacher, chemistry	0.7	S	1.6
Postsecondary teacher, physics	S	S	1.7
Postsecondary teacher, other physical sciences	S	S	2.0
Other physical scientist	S	2.0	2.2
Psychologist	0.2	0.1	0.5
Psychologist	0.2	0.1	0.6
Postsecondary teacher, psychology	S	S	1.0
Social scientist	0.3	0.2	0.6
Economist	1.3	S	1.7
Political scientist	S	S	3.9
Postsecondary teacher, economics	0.4	S	1.4
Postsecondary teacher, political science	S	S	1.5
Postsecondary teacher, sociology	S	S	1.6
Postsecondary teacher, other social sciences	0.5	S	1.5
Sociologist/anthropologist	0.7	S	2.3
Other social scientist	0.5	1.4	1.3
Engineering occupations	0.2	0.3	0.5
Aerospace/aeronautical/astronautical engineer	S	1.6	2.2
Chemical engineer	0.7	0.9	1.8
Civil/architectural/sanitary engineer	S	0.9	2.3
Electrical engineer	0.4	0.8	1.2
Materials/metallurgical engineer	S	S	5.1
Mechanical engineer	0.8	1.1	1.8
Postsecondary teacher, engineering	0.3	S	1.3
Other engineer	0.6	0.6	1.2
Science and engineering-related occupations	0.2	0.4	0.6
Health occupation, except postsecondary teacher	0.4	0.8	1.0
Postsecondary teacher, health and related sciences	0.4	0.3	1.1
SEH manager	0.5	0.5	1.2
SEH precollege teacher	1.7	1.9	2.2
SEH technician/technologist	1.5	3.8	2.9

TABLE A-32. Standard errors for selected employment characteristics of doctoral scientists and engineers, by occupation: 2006 (Standard error of the rate per 100)

Occupation	Unemployment rate	Involuntarily- out-of-field rate	Labor force participation rate
Other SEH-related occupation	S	11.3	
Non-science and engineering occupations	0.2	0.4	10.6
Arts/humanities-related occupation	0.8	2.2	0.4
Management-related occupation	0.4	0.9	2.8
Non-SEH manager	0.3	0.4	1.0
Non-SEH postsecondary teacher	0.5	0.5	0.8
Non-SEH precollege/other teacher	S	2.4	1.5
Sales/marketing occupation	0.9	2.4	3.8
Social service-related occupation	S	1.5	1.7
Other non-SEH occupation	1.0	1.8	2.8

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTES: Labor force is defined as those employed (E) plus those unemployed and seeking work (U). Population (P) is defined as all SEH doctorate holders under age 76 , residing in the United States during the week of 1 April 2006, who earned doctorates from U.S. institutions. Involuntarily-out-of field rate is the percentage of employed individuals who reported working part time exclusively because suitable full-time work was not available and/or reported working in an area not related to the first doctoral degree (in their principal job) at least partially because suitable work in the field was not available. Unemployment rate $\left(R_{U}\right)=\mathrm{U} /(\mathrm{E}+\mathrm{U})$. Labor force participation rate $\left(\mathrm{R}_{\mathrm{LF}}\right)=(\mathrm{E}+\mathrm{U}) / \mathrm{P}$.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-33. Standard errors for doctoral scientists and engineers, by occupation and sex: 2006

Occupation	Total	Male	Female	Total	Male	Female
	Number			Percent		
All occupations	1,320	1,070	630	-	0.1	0.1
Science occupations	1,880	1,660	950	-	0.2	0.2
Biological, agricultural, or other life scientist	1,090	950	640	-	0.4	0.4
Agricultural/food scientist	440	380	210	-	1.7	1.7
Biochemist/biophysicist	600	530	320	-	1.7	1.7
Biological scientist	780	570	410	-	1.2	1.2
Forestry/conservation scientist	200	180	90	-	3.8	3.8
Medical scientist	850	700	560	-	1.2	1.2
Postsecondary teacher, agricultural/other natural sciences	340	330	110	-	2.0	2.0
Postsecondary teacher, biological sciences	710	580	420	-	1.2	1.2
Other biological/agricultura//life scientist	340	240	240	-	3.1	3.1
Computer and information scientist	840	810	310	-	0.8	0.8
Computer/information scientist	830	770	290	-	0.9	0.9
Postsecondary teacher, computer science	360	360	140	-	1.6	1.6
Mathematical scientist	550	510	270	-	0.9	0.9
Mathematical scientist	490	460	220	-	1.9	1.9
Postsecondary teacher, mathematics/statistics	480	480	200	-	1.2	1.2
Physical scientist	1,020	940	400	-	0.4	0.4
Chemist, except biochemist	630	560	270	-	0.9	0.9
Earth/atmospheric/ocean scientist	430	410	190	-	1.5	1.5
Physicist/astronomer	540	550	150	-	1.0	1.0
Postsecondary teacher, chemistry	520	470	240	-	1.5	1.5
Postsecondary teacher, physics	400	390	130	-	1.4	1.4
Postsecondary teacher, other physical sciences	350	320	170	-	2.1	2.1
Other physical scientist	260	220	110	-	3.0	3.0
Psychologist	860	540	620	-	0.5	0.5
Psychologist	860	570	650	-	0.7	0.7
Postsecondary teacher, psychology	640	460	460	-	1.7	1.7
Social scientist	830	680	450	-	0.6	0.6
Economist	430	380	180	-	1.7	1.7
Political scientist	230	200	110	-	4.3	4.3
Postsecondary teacher, economics	420	390	170	-	1.6	1.6
Postsecondary teacher, political science	370	350	170	-	1.7	1.7
Postsecondary teacher, sociology	380	280	240	-	2.0	2.0
Postsecondary teacher, other social sciences	420	330	280	-	2.0	2.0
Sociologist/anthropologist	310	220	210	-	3.1	3.1
Other social scientist	400	260	300	-	2.6	2.6
Engineering occupations	1,040	1,000	320	-	0.3	0.3
Aerospace/aeronautical/astronautical engineer	360	340	100	-	1.5	1.5
Chemical engineer	430	400	130	-	1.4	1.4
Civil/architectural/sanitary engineer	330	320	80	-	1.6	1.6
Electrical engineer	610	610	180	-	0.9	0.9
Materials/metallurgical engineer	190	170	70	-	5.7	5.7
Mechanical engineer	470	460	110	-	1.1	1.1
Postsecondary teacher, engineering	700	660	210	-	1.0	1.0
Other engineer	670	640	260	-	1.1	1.1
Science and engineering-related occupations	1,140	920	620	-	0.7	0.7
Health occupation, except postsecondary teacher	720	540	420	-	1.4	1.4
Postsecondary teacher, health and related sciences	610	470	420	-	1.7	1.7
SEH manager	790	680	360	-	1.2	1.2
SEH precollege teacher	360	300	170	-	3.4	3.4
SEH technician/technologist	330	330	120	-	3.2	3.2
Other SEH-related occupation	100	100	40	-	9.7	9.7

TABLE A-33. Standard errors for doctoral scientists and engineers, by occupation and sex: 2006

Occupation	Total	Male	Female	Total	Male	Female
	Number			Percent		
Non-science and engineering occupations	1,500	1,400	710	-	0.6	0.6
Arts/humanities-related occupation	430	350	250	-	3.3	3.3
Management-related occupation	830	760	380	-	1.4	1.4
Non-SEH manager	1,110	1,020	480	-	0.9	0.9
Non-SEH postsecondary teacher	480	440	300	-	1.9	1.9
Non-SEH precollege/other teacher	310	180	220	-	3.7	3.7
Sales/marketing occupation	530	450	270	-	2.4	2.4
Social service-related occupation	330	230	260	-	4.0	4.0
Other non-SEH occupation	590	470	320	-	2.1	2.1

- = no value; standard errors are not calculated for proportions of 100%.

SEH = science, engineering, and health.
NOTES: If respondent was not employed during survey reference period, occupation when last employed was reported. Excludes 360 individuals who reported never having worked so could not be classified by occupation. Full time and part time employment status is for the principal job only, not for all jobs held in the labor force. For example, an individual could work part time in his/her principal job but full time in the labor force. Full time and part time employment status is not comparable to data reported in previous years when full time and part time status was for all jobs held and not just the principal job. Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-34. Standard errors for doctoral scientists and engineers, by occupation and race/ethnicity: 2006

Occupation	All	American Indian/ Alaskan Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
	Number						
All occupations	1,320	140	790	300	310	940	110
Science occupations	1,880	170	860	330	320	1,680	100
Biological, agricultural, or other life scientist	1,090	120	510	180	170	1,030	70
Agricultural/food scientist	440	50	180	90	60	370	S
Biochemist/biophysicist	600	50	340	60	70	530	S
Biological scientist	780	60	350	70	110	680	40
Forestry/conservation scientist	200	S	30	S	S	190	S
Medical scientist	850	70	430	110	100	730	40
Postsecondary teacher, agricultural/other natural sciences	340	40	100	40	50	310	S
Postsecondary teacher, biological sciences	710	60	220	100	100	640	S
Other biological/agricultural/life scientist	340	40	190	50	80	300	S
Computer and information scientist	840	60	460	90	90	680	S
Computer/information scientist	830	50	430	80	90	650	S
Postsecondary teacher, computer science	360	S	200	40	50	320	S
Mathematical scientist	550	S	300	90	100	510	S
Mathematical scientist	490	S	270	50	70	430	S
Postsecondary teacher, mathematics/statistics	480	S	220	90	100	460	S
Physical scientist	1,020	90	480	130	140	850	40
Chemist, except biochemist	630	50	350	90	80	550	S
Earth/atmospheric/ocean scientist	430	40	160	40	70	390	S
Physicist/astronomer	540	50	230	60	80	480	S
Postsecondary teacher, chemistry	520	60	160	100	80	480	S
Postsecondary teacher, physics	400	40	170	30	70	370	S
Postsecondary teacher, other physical sciences	350	S	80	30	40	330	S
Other physical scientist	260	S	120	40	40	230	S
Psychologist	860	90	140	160	150	820	60
Psychologist	860	100	130	160	160	790	50
Postsecondary teacher, psychology	640	70	80	150	120	610	50
Social scientist	830	100	250	180	120	780	50
Economist	430	40	170	60	70	400	S
Political scientist	230	S	70	60	50	210	S
Postsecondary teacher, economics	420	S	150	90	40	380	S
Postsecondary teacher, political science	370	50	80	80	50	350	S
Postsecondary teacher, sociology	380	40	70	90	50	340	S
Postsecondary teacher, other social sciences	420	80	130	80	80	400	S
Sociologist/anthropologist	310	S	70	50	30	280	S
Other social scientist	400	S	100	110	50	370	S
Engineering occupations	1,040	90	670	130	130	830	S
Aerospace/aeronautical/astronautical engineer	360	S	160	S	40	320	S
Chemical engineer	430	S	230	60	70	350	S
Civil/architectural/sanitary engineer	330	S	190	40	70	270	S
Electrical engineer	610	40	390	40	70	470	S
Materials/metallurgical engineer	190	S	100	S	S	150	S
Mechanical engineer	470	S	280	50	40	360	S
Postsecondary teacher, engineering	700	70	360	120	100	580	S
Other engineer	670	S	360	70	80	500	S
Science and engineering-related occupations	1,140	100	500	210	170	1,010	60
Health occupation, except postsecondary teacher	720	60	280	120	90	620	40
Postsecondary teacher, health and related sciences	610	30	190	130	80	600	S
SEH manager	790	70	350	90	100	710	40
SEH precollege teacher	360	40	100	80	50	330	S
SEH technician/technologist	330	S	170	S	50	260	S

TABLE A-34. Standard errors for doctoral scientists and engineers, by occupation and race/ethnicity: 2006

Occupation	All	American Indian/ Alaskan Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{\text {a }}$
Other SEH-related occupation	100	S	60	S	S	80	S
Non-science and engineering occupations	1,500	150	570	230	190	1,440	60
Arts/humanities-related occupation	430	S	110	30	50	400	S
Management-related occupation	830	60	340	130	110	760	S
Non-SEH manager	1,110	100	400	160	130	1,010	S
Non-SEH postsecondary teacher	480	50	180	110	90	480	S
Non-SEH precollege/other teacher	310	S	90	60	40	270	S
Sales/marketing occupation	530	50	210	60	70	490	S
Social service-related occupation	330	60	80	90	60	280	S
Other non-SEH occupation	590	60	150	80	70	540	40
	Percent						
All occupations	-	0.1	0.1	0.1	0.1	0.1	0.1
Science occupations	-	0.1	0.2	0.1	0.1	0.2	0.1
Biological, agricultural, or other life scientist	-	0.1	0.4	0.1	0.1	0.4	0.1
Agricultural/food scientist	-	0.4	1.6	0.8	0.5	1.5	S
Biochemist/biophysicist	-	0.3	1.8	0.4	0.4	1.9	S
Biological scientist	-	0.2	1.3	0.3	0.4	1.4	0.2
Forestry/conservation scientist	-	S	1.5	S	S	1.8	S
Medical scientist	-	0.2	0.9	0.3	0.3	1.0	0.1
Postsecondary teacher, agricultural/other natural sciences	-	0.6	1.7	0.7	0.9	2.0	S
Postsecondary teacher, biological sciences	-	0.2	0.7	0.3	0.3	0.9	S
Other biological/agricultural/life scientist	-	0.7	3.2	0.8	1.3	3.4	S
Computer and information scientist	-	0.1	1.0	0.2	0.2	1.0	S
Computer/information scientist	-	0.2	1.2	0.3	0.3	1.2	S
Postsecondary teacher, computer science	-	S	2.2	0.5	0.6	2.2	S
Mathematical scientist	-	S	1.0	0.3	0.3	1.0	S
Mathematical scientist	-	S	2.2	0.4	0.6	2.2	S
Postsecondary teacher, mathematics/statistics	-	S	1.3	0.5	0.6	1.5	S
Physical scientist	-	0.1	0.5	0.1	0.2	0.5	0.1
Chemist, except biochemist	-	0.2	1.1	0.3	0.3	1.2	S
Earth/atmospheric/ocean scientist	-	0.3	1.3	0.3	0.5	1.5	S
Physicist/astronomer	-	0.3	1.3	0.4	0.5	1.4	S
Postsecondary teacher, chemistry	-	0.4	1.1	0.6	0.6	1.5	S
Postsecondary teacher, physics	-	0.4	1.7	0.3	0.7	1.8	S
Postsecondary teacher, other physical sciences	-	S	1.1	0.4	0.5	1.3	S
Other physical scientist	-	S	3.6	1.1	1.0	3.7	S
Psychologist	-	0.1	0.2	0.2	0.2	0.3	0.1
Psychologist	-	0.2	0.2	0.3	0.3	0.5	0.1
Postsecondary teacher, psychology	-	0.3	0.4	0.7	0.5	1.0	0.2
Social scientist	-	0.2	0.4	0.3	0.2	0.5	0.1
Economist	-	0.4	1.7	0.6	0.7	2.0	S
Political scientist	-	S	3.0	2.4	2.0	4.7	S
Postsecondary teacher, economics	-	S	1.3	0.8	0.4	1.5	S
Postsecondary teacher, political science	-	0.5	0.8	0.8	0.4	1.2	S
Postsecondary teacher, sociology	-	0.4	0.7	0.9	0.6	1.3	S
Postsecondary teacher, other social sciences	-	0.7	1.1	0.7	0.7	1.5	S
Sociologist/anthropologist	-	S	1.3	1.0	0.6	1.6	S
Other social scientist	-	S	1.3	1.4	0.6	1.9	S
Engineering occupations	-	0.1	0.6	0.1	0.1	0.6	S
Aerospace/aeronautical/astronautical engineer	-	S	2.4	S	0.7	2.5	S
Chemical engineer	-	S	2.3	0.6	0.7	2.4	S
Civil/architectural/sanitary engineer	-	S	3.0	0.6	1.2	3.1	S
Electrical engineer	-	0.2	1.5	0.2	0.3	1.5	S

TABLE A-34. Standard errors for doctoral scientists and engineers, by occupation and race/ethnicity: 2006

Occupation	All	American Indian/ Alaskan Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{a}$
Materials/metallurgical engineer	-	S	7.3	S	S	7.6	S
Mechanical engineer	-	S	2.2	0.4	0.4	2.3	S
Postsecondary teacher, engineering	-	0.3	1.6	0.6	0.5	1.7	S
Other engineer	-	S	1.3	0.3	0.3	1.3	S
Science and engineering-related occupations	-	0.1	0.6	0.3	0.2	0.7	0.1
Health occupation, except postsecondary teacher	-	0.3	1.1	0.5	0.4	1.2	0.2
Postsecondary teacher, health and related sciences	-	0.1	1.0	0.7	0.4	1.1	S
SEH manager	-	0.3	1.2	0.3	0.3	1.3	0.2
SEH precollege teacher	-	0.9	2.2	1.8	1.0	3.3	S
SEH technician/technologist	-	S	3.6	S	1.3	3.6	S
Other SEH-related occupation	-	S	12.5	S	S	12.4	S
Non-science and engineering occupations	-	0.1	0.4	0.2	0.1	0.5	0.1
Arts/humanities-related occupation	-	S	1.5	0.4	0.7	1.7	S
Management-related occupation	-	0.2	1.2	0.5	0.4	1.4	S
Non-SEH manager	-	0.2	0.7	0.3	0.3	0.8	S
Non-SEH postsecondary teacher	-	0.3	1.2	0.7	0.6	1.7	S
Non-SEH precollege/other teacher	-	S	2.2	1.5	1.0	2.6	S
Sales/marketing occupation	-	0.4	2.1	0.6	0.7	2.2	S
Social service-related occupation	-	1.1	1.6	1.8	1.2	3.1	S
Other non-SEH occupation	-	0.4	1.2	0.7	0.6	1.6	0.3

S = suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.

SEH = science, engineering, and health.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Excludes 360 individuals who reported never having worked so could not be classified by occupation. Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-35. Standard errors for doctoral scientists and engineers, by occupation and disability status: 2006

Occupation	All	With disability	No disability
		Number	
All occupations	1,320	1,050	1,550
Science occupations	1,880	900	1,940
Biological, agricultural, or other life scientist	1,090	480	1,140
Agricultural/food scientist	440	130	430
Biochemist/biophysicist	600	170	600
Biological scientist	780	220	760
Forestry/conservation scientist	200	70	210
Medical scientist	850	230	820
Postsecondary teacher, agricultural/other natural sciences	340	110	350
Postsecondary teacher, biological sciences	710	220	690
Other biological/agricultural/life scientist	340	100	330
Computer and information scientist	840	270	790
Computer/information scientist	830	250	760
Postsecondary teacher, computer science	360	110	370
Mathematical scientist	550	260	540
Mathematical scientist	490	150	500
Postsecondary teacher, mathematics/statistics	480	210	490
Physical scientist	1,020	410	960
Chemist, except biochemist	630	230	630
Earth/atmospheric/ocean scientist	430	140	420
Physicist/astronomer	540	160	530
Postsecondary teacher, chemistry	520	170	500
Postsecondary teacher, physics	400	130	400
Postsecondary teacher, other physical sciences	350	120	330
Other physical scientist	260	40	260
Psychologist	860	340	890
Psychologist	860	310	870
Postsecondary teacher, psychology	640	210	590
Social scientist	830	380	870
Economist	430	150	430
Political scientist	230	110	220
Postsecondary teacher, economics	420	190	420
Postsecondary teacher, political science	370	150	360
Postsecondary teacher, sociology	380	160	350
Postsecondary teacher, other social sciences	420	150	410
Sociologist/anthropologist	310	90	300
Other social scientist	400	120	390
Engineering occupations	1,040	400	950
Aerospace/aeronautical/astronautical engineer	360	110	350
Chemical engineer	430	100	420
Civil/architectural/sanitary engineer	330	90	320
Electrical engineer	610	170	600
Materials/metallurgical engineer	190	50	180
Mechanical engineer	470	170	430
Postsecondary teacher, engineering	700	210	690
Other engineer	670	210	600
Science and engineering-related occupations	1,140	340	1,170
Health occupation, except postsecondary teacher	720	200	710
Postsecondary teacher, health and related sciences	610	190	590
SEH manager	790	200	770
SEH precollege teacher	360	80	340
SEH technician/technologist	330	110	310
Other SEH-related occupation	100	S	100

TABLE A-35. Standard errors for doctoral scientists and engineers, by occupation and disability status: 2006

Occupation	All	With disability	No disability
Non-science and engineering occupations	1,500	460	1,490
Arts/humanities-related occupation	430	120	410
Management-related occupation	830	240	780
Non-SEH manager	1,110	280	1,080
Non-SEH postsecondary teacher	480	180	460
Non-SEH precollege/other teacher	310	110	300
Sales/marketing occupation	530	160	510
Social service-related occupation	330	110	320
Other non-SEH occupation	590	170	560
	Percent		
All occupations	-	0.1	0.1
Science occupations	-	0.2	0.2
Biological, agricultural, or other life scientist	-	0.4	0.4
Agricultural/food scientist	-	1.2	1.2
Biochemist/biophysicist	-	1.0	1.0
Biological scientist	-	0.9	0.9
Forestry/conservation scientist	-	3.7	3.7
Medical scientist	-	0.6	0.6
Postsecondary teacher, agricultural/other natural sciences	-	2.1	2.1
Postsecondary teacher, biological sciences	-	0.7	0.7
Other biological/agricultural/life scientist	-	1.6	1.6
Computer and information scientist	-	0.7	0.7
Computer/information scientist	-	0.8	0.8
Postsecondary teacher, computer science	-	1.4	1.4
Mathematical scientist	-	0.9	0.9
Mathematical scientist	-	1.3	1.3
Postsecondary teacher, mathematics/statistics	-	1.2	1.2
Physical scientist	-	0.4	0.4
Chemist, except biochemist	-	0.8	0.8
Earth/atmospheric/ocean scientist	-	1.2	1.2
Physicist/astronomer	-	1.0	1.0
Postsecondary teacher, chemistry	-	1.1	1.1
Postsecondary teacher, physics	-	1.3	1.3
Postsecondary teacher, other physical sciences	-	1.5	1.5
Other physical scientist	-	1.3	1.3
Psychologist	-	0.4	0.4
Psychologist	-	0.5	0.5
Postsecondary teacher, psychology	-	1.0	1.0
Social scientist	-	0.6	0.6
Economist	-	1.6	1.6
Political scientist	-	4.9	4.9
Postsecondary teacher, economics	-	1.8	1.8
Postsecondary teacher, political science	-	1.4	1.4
Postsecondary teacher, sociology	-	1.6	1.6
Postsecondary teacher, other social sciences	-	1.3	1.3
Sociologist/anthropologist	-	1.9	1.9
Other social scientist	-	1.5	1.5
Engineering occupations	-	0.4	0.4
Aerospace/aeronautical/astronautical engineer	-	1.6	1.6
Chemical engineer	-	1.2	1.2
Civil/architectural/sanitary engineer	-	1.7	1.7
Electrical engineer	-	0.8	0.8
Materials/metallurgical engineer	-	4.5	4.5
Mechanical engineer	-	1.6	1.6

TABLE A-35. Standard errors for doctoral scientists and engineers, by occupation and disability status: 2006

Occupation	All	With disability	No disability
Postsecondary teacher, engineering	-	1.0	1.0
Other engineer	-	0.9	0.9
Science and engineering-related occupations	-	0.4	0.4
Health occupation, except postsecondary teacher	-	0.9	0.9
Postsecondary teacher, health and related sciences	-	1.0	1.0
SEH manager	-	0.7	0.7
SEH precollege teacher	-	1.7	1.7
SEH technician/technologist	-	2.7	2.7
Other SEH-related occupation	-	5	6.6
Non-science and engineering occupations	-	0.4	0.4
Arts/humanities-related occupation	-	1.8	1.8
Management-related occupation	-	0.8	0.8
Non-SEH manager	-	0.6	0.6
Non-SEH postsecondary teacher	-	1.2	1.2
Non-SEH precollege/other teacher	-	2.9	2.9
Sales/marketing occupation	-	1.6	1.6
Social service-related occupation	-	2.3	2.3
Other non-SEH occupation	1.4	1.4	

$\mathrm{S}=$ suppressed for reliability or confidentiality.
$-=$ no value; standard errors are not calculated for proportions of 100%.
SEH = science, engineering, and health.
NOTES: Excludes 360 individuals who reported never having worked so could not be classified by occupation. The SESTAT surveys ask the degree of difficulty-none, slight, moderate, severe, or unable to do-an individual has in seeing (with glasses), hearing (with hearing aid), walking without assistance, or lifting 10 pounds. Those respondents who answered "moderate," "severe," or "unable to do" for any activity were classified as having a disability. Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-36. Standard errors for doctoral scientists and engineers employed as postdocs, by occupation: 2006

Occupation	Number	Percent
Total in postdoc ${ }^{\text {a }}$	770	-
Science occupations	740	0.9
Biological, agricultural, or other life scientist	550	1.2
Agricultural/food scientist	110	0.3
Biochemist/biophysicist	280	0.8
Biological scientist	320	1.0
Forestry/conservation scientist	50	0.2
Medical scientist	410	1.2
Postsecondary teacher, agricultural/other natural sciences	S	S
Postsecondary teacher, biological sciences	90	0.3
Other biological/agricultural/life scientist	160	0.5
Computer and information scientist	80	0.3
Computer/information scientist	80	0.3
Postsecondary teacher, computer science	S	S
Mathematical scientist	150	0.5
Mathematical scientist	130	0.4
Postsecondary teacher, mathematics/statistics	90	0.3
Physical scientist	350	1.0
Chemist, except biochemist	210	0.6
Earth/atmospheric/ocean scientist	130	0.4
Physicist/astronomer	180	0.6
Postsecondary teacher, chemistry	S	S
Postsecondary teacher, physics	50	0.1
Postsecondary teacher, other physical sciences	S	S
Other physical scientist	90	0.3
Psychologist	220	0.7
Psychologist	190	0.6
Postsecondary teacher, psychology	60	0.2
Social scientist	150	0.5
Economist	S	S
Political scientist	60	0.2
Postsecondary teacher, economics	S	S
Postsecondary teacher, political science	70	0.2
Postsecondary teacher, sociology	S	S
Postsecondary teacher, other social sciences	60	0.2
Sociologist/anthropologist	80	0.2
Other social scientist	90	0.3
Engineering occupations	260	0.8
Aerospace/aeronautical/astronautical engineer	50	0.2
Chemical engineer	90	0.3
Civil/architectural/sanitary engineer	S	S
Electrical engineer	110	0.3
Materials/metallurgical engineer	S	S
Mechanical engineer	120	0.4
Postsecondary teacher, engineering	40	0.1
Other engineer	220	0.7
Science and engineering-related occupations	180	0.6
Health occupation, except postsecondary teacher	170	0.6
Postsecondary teacher, health and related sciences	70	0.2
SEH manager	S	S
SEH precollege teacher	S	S
SEH technician/technologist	60	0.2
Other SEH-related occupation	S	S

TABLE A-36. Standard errors for doctoral scientists and engineers employed as postdocs, by occupation: 2006

Occupation	Number	Percent
Non-science and engineering occupations	80	0.2
Arts/humanities-related occupation	S	S
Management-related occupation	S	S
Non-SEH manager	S	S
Non-SEH postsecondary teacher	60	0.2
Non-SEH precollege/other teacher	S	S
Sales/marketing occupation	S	S
Social service-related occupation	50	0.1
Other non-SEH occupation	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
$-=$ no value; standard errors are not calculated for proportions of 100%.
SEH = science, engineering, and health.
${ }^{a}$ A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006).

NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-37. Standard errors for employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

Occupation	All employed			Asian			Other minority ${ }^{\text {a }}$			White		
	Total	Male	Female									
	Number											
All occupations	1,640	1,320	880	800	690	430	940	790	460	1,390	1,220	710
Science occupations	1,890	1,630	990	860	710	450	970	770	470	1,730	1,640	820
Biological, agricultural, or other life scientist	1,120	950	620	490	420	300	520	450	330	1,060	890	540
Agricultural/food scientist	410	350	210	170	140	110	170	160	110	350	320	180
Biochemist/biophysicist	580	510	270	320	260	190	330	270	200	490	410	230
Biological scientist	730	540	400	330	240	210	370	260	220	630	470	350
Forestry/conservation scientist	180	160	90	30	30	S	40	S	S	170	150	90
Medical scientist	860	670	530	420	340	240	460	350	260	720	560	450
Postsecondary teacher, agricultural/other natural sciences	320	300	120	100	80	60	120	110	70	290	270	120
Postsecondary teacher, biological sciences	710	560	420	210	180	120	280	240	150	670	500	390
Other biological/agricultural/life scientist	320	220	240	190	120	120	210	130	130	270	200	190
Computer and information scientist	770	730	300	450	430	180	480	450	190	630	590	240
Computer/information scientist	750	700	290	430	400	180	450	430	190	590	540	220
Postsecondary teacher, computer science	360	360	130	200	190	70	200	190	70	320	300	110
Mathematical scientist	500	480	280	300	250	170	320	290	170	480	440	230
Mathematical scientist	470	440	220	260	210	150	280	240	150	400	350	180
Postsecondary teacher, mathematics/statistics	460	440	200	220	200	110	260	240	120	450	400	190
Physical scientist	1,060	980	380	470	420	190	520	470	200	900	850	310
Chemist, except biochemist	600	550	230	310	270	150	330	280	160	510	490	190
Earth/atmospheric/ocean scientist	400	370	170	140	140	60	170	160	60	380	360	150
Physicist/astronomer	570	570	140	230	220	80	250	240	80	520	500	130
Postsecondary teacher, chemistry	470	430	200	160	140	70	200	190	90	440	420	180
Postsecondary teacher, physics	390	380	130	170	160	60	190	180	S	350	340	120
Postsecondary teacher, other physical sciences	350	340	160	80	80	30	100	100	40	340	330	160
Other physical scientist	240	220	100	120	110	50	120	110	S	220	190	90
Psychologist	860	550	620	150	80	130	300	170	240	810	550	580
Psychologist	850	540	630	140	60	130	300	170	240	770	520	590
Postsecondary teacher, psychology	590	460	440	80	50	70	210	110	180	570	450	380
Social scientist	830	690	440	230	190	140	320	260	200	770	640	440
Economist	400	350	170	160	150	80	190	160	80	350	340	150
Political scientist	210	180	100	60	50	30	90	70	50	180	160	100
Postsecondary teacher, economics	390	380	170	150	140	70	160	160	80	340	340	140
Postsecondary teacher, political science	350	330	170	70	70	40	120	110	50	320	290	160
Postsecondary teacher, sociology	350	260	230	70	50	50	120	80	90	310	240	200
Postsecondary teacher, other social sciences	410	330	260	120	90	70	170	130	110	380	300	240
Sociologist/anthropologist	300	210	190	60	40	50	80	70	60	280	200	180
Other social scientist	380	260	290	100	70	80	150	100	130	360	250	260

TABLE A-37. Standard errors for employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

	All employed			Asian			Other minority ${ }^{\text {a }}$			White		
Occupation	Total	Male	Female									
Engineering occupations	1,000	960	320	640	620	210	670	650	220	770	750	220
Aerospace/aeronautical/astronautical engineer	330	310	90	150	160	S	170	170	50	280	270	90
Chemical engineer	390	360	120	220	200	90	240	220	90	320	290	90
Civil/architectural/sanitary engineer	310	300	80	190	170	50	200	190	S	260	240	70
Electrical engineer	560	560	170	390	370	150	380	370	150	410	410	70
Materials/metallurgical engineer	170	160	60	100	90	S	100	S	S	140	130	50
Mechanical engineer	410	410	100	260	250	80	270	260	S	330	320	70
Postsecondary teacher, engineering	660	620	200	330	320	80	360	350	100	530	490	160
Other engineer	600	580	250	340	310	160	370	340	160	470	460	170
Science and engineering-related occupations	1,110	850	610	500	440	220	550	470	290	990	790	540
Health occupation, except postsecondary teacher	720	530	400	270	220	160	300	240	190	620	450	360
Postsecondary teacher, health and related sciences	600	460	390	190	160	100	220	190	130	570	440	370
SEH manager	740	600	350	330	330	120	360	350	140	640	510	320
SEH precollege teacher	310	270	150	100	70	60	150	110	80	280	250	140
SEH technician/technologist	290	290	100	160	150	80	160	160	90	230	220	40
Other SEH-related occupation	90	90	S	60	50	S	S	S	S	70	70	S
Non-science and engineering occupations	1,350	1,210	720	540	470	260	690	570	340	1,320	1,120	710
Arts/humanities-related occupation	390	290	230	90	60	70	110	80	80	370	270	220
Management-related occupation	770	670	410	330	280	180	370	320	210	690	580	360
Non-SEH manager	1,020	920	470	370	350	110	400	370	150	910	830	450
Non-SEH postsecondary teacher	480	410	290	170	140	110	230	170	150	460	410	250
Non-SEH precollege/other teacher	260	140	200	80	60	60	100	70	80	230	130	190
Sales/marketing occupation	450	380	240	200	190	70	220	200	100	420	350	210
Social service-related occupation	320	220	260	80	60	50	160	110	110	280	200	220
Other non-SEH occupation	520	430	280	140	120	90	190	160	110	470	400	250
	Percent											
All occupations	-	0.2	0.2	-	0.4	0.4	-	0.3	0.3	-	0.2	0.2
Science occupations	-	0.3	0.3	-	0.7	0.7	-	0.5	0.5	-	0.3	0.3
Biological, agricultural, or other life scientist	-	0.5	0.5	-	1.2	1.2	-	1.0	1.0	-	0.6	0.6
Agricultural/food scientist	-	2.0	2.0	-	6.9	6.9	-	5.2	5.2	-	2.2	2.2
Biochemist/biophysicist	-	1.7	1.7	-	3.2	3.2	-	3.0	3.0	-	2.1	2.1
Biological scientist	-	1.4	1.4	-	3.9	3.9	-	2.9	2.9	-	1.6	1.6
Forestry/conservation scientist	-	4.5	4.5	-	13.8	S	-	S	S	-	4.8	4.8
Medical scientist	-	1.2	1.2	-	2.3	2.3	-	2.0	2.0	-	1.4	1.4
Postsecondary teacher, agricultural/other natural sciences	-	2.4	2.4	-	14.9	14.9	-	8.3	8.3	-	2.8	2.8
Postsecondary teacher, biological sciences	-	1.3	1.3	-	5.3	5.3	-	3.6	3.6	-	1.4	1.5
Other biological/agricultural/life scientist	-	3.5	3.5	-	7.2	7.2	-	5.2	5.2	-	4.4	4.4
Computer and information scientist	-	0.9	0.9	-	1.5	1.5	-	1.4	1.4	-	1.1	1.1
Computer/information scientist	-	1.0	1.1	-	1.8	1.8	-	1.7	1.7	-	1.3	1.3
Postsecondary teacher, computer science	-	1.8	1.8	-	3.4	3.4	-	2.9	2.9	-	2.1	2.2

Occupation	All employed			Asian			Other minority ${ }^{\text {a }}$			White		
	Total	Male	Female									
Mathematical scientist	-	1.1	1.1	-	2.5	2.5	-	2.2	2.2	-	1.2	1.2
Mathematical scientist	-	2.1	2.1	-	3.9	3.9	-	3.5	3.5	-	2.5	2.5
Postsecondary teacher, mathematics/statistics	-	1.4	1.4	-	3.7	3.7	-	3.2	3.2	-	1.6	1.6
Physical scientist	-	0.5	0.5	-	1.3	1.3	-	1.1	1.1	-	0.5	0.6
Chemist, except biochemist	-	1.0	1.0	-	2.3	2.3	-	1.9	1.9	-	1.2	1.2
Earth/atmospheric/ocean scientist	-	1.7	1.7	-	3.5	3.5	-	2.9	2.9	-	1.8	1.8
Physicist/astronomer	-	1.1	1.1	-	3.2	3.2	-	2.9	2.9	-	1.1	1.2
Postsecondary teacher, chemistry	-	1.6	1.6	-	6.4	6.4	-	4.2	4.2	-	1.8	1.8
Postsecondary teacher, physics	-	1.6	1.6	-	4.8	4.8	-	3.8	S	-	1.7	1.7
Postsecondary teacher, other physical sciences	-	2.5	2.5	-	7.0	7.0	-	6.4	6.4	-	2.7	2.7
Other physical scientist	-	3.2	3.2	-	7.4	7.4	-	6.9	S	-	4.0	4.0
Psychologist	-	0.6	0.6	-	3.6	3.6	-	1.7	1.7	-	0.7	0.7
Psychologist	-	0.8	0.8	-	4.3	4.3	-	2.5	2.5	-	0.9	0.9
Postsecondary teacher, psychology	-	1.9	2.0	-	8.6	8.6	-	3.7	3.7	-	2.0	2.0
Social scientist	-	0.7	0.7	-	2.5	2.5	-	1.6	1.6	-	0.9	0.9
Economist	-	1.9	1.9	-	6.0	6.0	-	4.3	4.3	-	2.3	2.3
Political scientist	-	5.4	5.4	-	19.3	19.3	-	9.7	9.7	-	7.1	7.1
Postsecondary teacher, economics	-	1.9	1.9	-	6.2	6.2	-	4.5	4.5	-	2.0	2.0
Postsecondary teacher, political science	-	1.9	1.9	-	12.9	12.9	-	4.4	4.4	-	2.0	2.0
Postsecondary teacher, sociology	-	2.3	2.3	-	9.0	9.0	-	4.1	4.1	-	2.6	2.6
Postsecondary teacher, other social sciences	-	2.2	2.2	-	6.9	6.9	-	3.9	3.9	-	2.5	2.5
Sociologist/anthropologist	-	3.2	3.2	-	13.2	13.2	-	7.5	7.5	-	3.7	3.7
Other social scientist	-	2.8	2.8	-	10.5	10.5	-	5.9	5.9	-	3.3	3.3
Engineering occupations	-	0.4	0.4	-	0.8	0.8	-	0.8	0.8	-	0.5	0.5
Aerospace/aeronautical/astronautical engineer	-	1.6	1.6	-	2.4	S	-	3.3	3.3	-	2.0	2.0
Chemical engineer	-	1.6	1.6	-	3.2	3.2	-	3.0	3.0	-	2.0	2.0
Civil/architectural/sanitary engineer	-	1.7	1.7	-	3.2	3.2	-	2.7	S	-	2.2	2.2
Electrical engineer	-	1.0	1.0	-	1.8	1.8	-	1.8	1.8	-	0.7	0.7
Materials/metallurgical engineer	-	5.5	5.5	-	8.2	S	-	S	S	-	7.7	7.7
Mechanical engineer	-	1.2	1.2	-	2.1	2.1	-	2.0	S	-	1.5	1.5
Postsecondary teacher, engineering	-	1.1	1.1	-	2.4	2.4	-	1.9	1.9	-	1.2	1.2
Other engineer	-	1.3	1.3	-	2.5	2.5	-	2.3	2.3	-	1.3	1.3
Science and engineering-related occupations	-	0.7	0.7	-	2.0	2.0	-	1.7	1.7	-	0.9	0.9
Health occupation, except postsecondary teacher	-	1.5	1.5	-	4.2	4.2	-	3.2	3.2	-	1.8	1.8
Postsecondary teacher, health and related sciences	-	1.8	1.8	-	5.4	5.4	-	4.0	4.0	-	2.1	2.1
SEH manager	-	1.3	1.3	-	3.0	3.0	-	2.7	2.7	-	1.5	1.5
SEH precollege teacher	-	3.7	3.7	-	15.5	15.5	-	8.3	8.3	-	4.1	4.2
SEH technician/technologist	-	3.3	3.3	-	6.6	6.6	-	6.1	S	-	2.1	2.1
Other SEH-related occupation	-	8.0	S	-	21.2	S	-	S	S	-	S	S
Non-science and engineering occupations	-	0.7	0.7	-	1.7	1.7	-	1.4	1.4	-	0.8	0.8

TABLE A-37. Standard errors for employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

Occupation	All employed			Asian			Other minority ${ }^{\text {a }}$			White		
	Total	Male	Female									
Arts/humanities-related occupation	-	3.4	3.4	-	11.6	11.6	-	8.2	8.2	-	3.6	3.6
Management-related occupation	-	1.6	1.6	-	3.6	3.6	-	3.1	3.1	-	1.9	1.9
Non-SEH manager	-	1.0	1.1	-	2.1	2.1	-	1.9	1.9	-	1.2	1.2
Non-SEH postsecondary teacher	-	2.1	2.1	-	6.4	6.4	-	4.0	4.0	-	2.4	2.4
Non-SEH precollege/other teacher	-	4.2	4.2	-	15.7	15.7	-	10.1	10.1	-	5.0	5.0
Sales/marketing occupation	-	2.5	2.5	-	4.9	4.9	-	5.1	5.1	-	2.6	2.6
Social servic--related occupation	-	4.3	4.4	-	14.4	14.4	-	8.8	8.8	-	4.9	4.9
Other non-SEH occupation	-	2.6	2.6	-	8.0	8.0	-	5.3	5.3	-	2.9	2.9

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.

SEH = science, engineering, and health.
${ }^{\text {a }}$ Other minority includes American Indian/Alaska Native, black, Hispanic, Native Hawaiian/Other Paciifi Islander and non-Hispanic respondents reporting more than one race. Detail for other minority is provided in table A-38.

NOTE: Standard errors for numbers are rounded up to nearest 10 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	All employed other minority ${ }^{\text {a }}$			American Indian/ Alaska Native			Black			Hispanic			Native Hawaiian/Other Pacific Islander		
	Total	Male	Female												
	Number														
All occupations	940	790	460	160	130	110	310	260	160	310	260	170	60	40	40
Science occupations	970	770	470	160	140	90	340	250	200	300	240	170	70	60	40
Biological, agricultural, or other life scientist	520	450	330	120	90	70	170	150	90	180	150	100	50	40	30
Agricultural/food scientist	170	160	110	50	40	S	80	80	S	50	50	30	S	S	S
Biochemist/biophysicist	330	270	200	50	50	S	60	60	30	70	60	30	S	S	S
Biological scientist	370	260	220	60	60	S	70	60	50	110	90	50	S	S	S
Forestry/conservation scientist	40	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Medical scientist	460	350	260	60	40	40	110	90	60	100	80	70	40	S	S
Postsecondary teacher, agricultural/other natural sciences	120	110	70	40	40	S	40	30	S	50	50	20	S	S	S
Postsecondary teacher, biological sciences	280	240	150	60	60	S	100	90	60	90	90	60	S	S	S
Other biological/agricultural/life scientist	210	130	130	40	S	S	50	40	30	70	50	50	S	S	S
Computer and information scientist	480	450	190	50	50	S	80	80	40	90	90	40	S	S	S
Computer/information scientist	450	430	190	50	50	S	80	70	40	90	90	40	S	S	S
Postsecondary teacher, computer science	200	190	70	S	S	S	40	40	20	50	50	S	S	S	S
Mathematical scientist	320	290	170	S	S	S	90	80	50	100	100	30	S	S	S
Mathematical scientist	280	240	150	S	S	S	50	40	30	70	70	30	S	S	S
Postsecondary teacher, mathematics/statistics	260	240	120	S	S	S	90	80	50	100	100	20	S	S	S
Physical scientist	520	470	200	80	80	30	120	100	60	150	140	50	30	S	S
Chemist, except biochemist	330	280	160	50	50	S	90	70	50	80	70	40	S	S	S
Earth/atmospheric/ocean scientist	170	160	60	40	40	S	40	30	S	70	60	S	S	S	S
Physicist/astronomer	250	240	80	50	40	S	60	60	S	70	70	20	S	S	S
Postsecondary teacher, chemistry	200	190	90	50	50	S	80	80	40	80	70	40	S	S	S
Postsecondary teacher, physics	190	180	S	40	40	S	30	30	S	70	70	S	S	S	S
Postsecondary teacher, other physical sciences	100	100	40	S	S	S	30	30	S	40	40	S	S	S	S
Other physical scientist	120	110	S	S	S	S	40	40	S	S	S	S	S	S	S
Psychologist	300	170	240	90	70	50	160	90	140	160	110	130	40	30	S
Psychologist	300	170	240	90	70	50	160	80	150	160	90	140	40	30	S
Postsecondary teacher, psychology	210	110	180	60	40	40	150	80	130	120	70	90	S	S	S
Social scientist	320	260	200	100	80	50	180	140	130	120	100	70	40	40	S
Economist	190	160	80	S	S	S	40	30	S	50	50	S	S	S	S
Political scientist	90	70	50	S	S	S	60	50	40	40	40	S	S	S	S
Postsecondary teacher, economics	160	160	80	S	S	S	90	80	40	40	40	S	S	S	S
Postsecondary teacher, political science	120	110	50	40	40	S	80	70	30	50	40	20	S	S	S
Postsecondary teacher, sociology	120	80	90	40	S	S	80	50	60	50	40	40	S	S	S
Postsecondary teacher, other social sciences	170	130	110	80	70	40	70	40	60	80	60	60	S	S	S
Sociologist/anthropologist	80	70	60	S	S	S	50	50	30	30	30	20	S	S	S

	All employed other minority ${ }^{\text {a }}$			American Indian/ Alaska Native			Black			Hispanic			Native Hawaiian/Other Pacific Islander		
Occupation	Total	Male	Female												
Other social scientist	150	100	130	S	S	S	110	70	90	50	40	40	S	S	S
Engineering occupations	670	650	220	90	90	30	130	120	40	130	120	50	S	S	S
Aerospace/aeronautical/astronautical engineer	170	170	50	S	S	S	S	S	S	40	30	S	S	S	S
Chemical engineer	240	220	90	S	S	S	60	60	S	50	50	S	S	S	S
Civil/architectural/sanitary engineer	200	190	S	S	S	S	40	40	S	70	60	S	S	S	S
Electrical engineer	380	370	150	40	S	S	40	40	S	70	60	30	S	S	S
Materials/metallurgical engineer	100	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Mechanical engineer	270	260	S	S	S	S	40	40	S	40	40	S	S	S	S
Postsecondary teacher, engineering	360	350	100	70	70	S	120	110	40	90	90	30	S	S	S
Other engineer	370	340	160	S	S	S	70	70	30	80	70	30	S	S	S
Science and engineering-related occupations	550	470	290	90	80	50	210	170	140	160	120	90	50	40	30
Health occupation, except postsecondary teacher	300	240	190	60	50	S	120	90	90	80	70	50	40	S	S
Postsecondary teacher, health and related sciences	220	190	130	30	S	30	130	90	90	80	60	50	S	S	S
SEH manager	360	350	140	70	60	30	90	80	40	100	70	60	S	S	S
SEH precollege teacher	150	110	80	40	S	S	70	60	40	40	40	S	S	S	S
SEH technician/technologist	160	160	S	S	S	S	S	S	S	50	40	S	S	S	S
Other SEH-related occupation	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Non-science and engineering occupations	690	570	340	140	120	80	240	180	160	180	150	120	40	30	S
Arts/humanities-related occupation	110	80	80	S	S	S	30	S	S	50	40	30	S	S	S
Management-related occupation	370	320	210	60	50	40	120	80	90	90	70	70	S	S	S
Non-SEH manager	400	370	150	90	90	40	160	120	110	110	110	70	S	S	S
Non-SEH postsecondary teacher	230	170	150	50	40	S	100	70	80	90	60	70	S	S	S
Non-SEH precollege/other teacher	100	70	80	S	S	S	50	30	50	40	S	30	S	S	S
Sales/marketing occupation	220	200	100	50	S	40	60	40	40	70	60	S	S	S	S
Social service-related occupation	160	110	110	50	S	S	90	70	60	60	30	50	S	S	S
Other non-SEH occupation	190	160	110	60	60	S	80	70	40	70	60	40	30	10	30
	Percent														
All occupations	-	0.3	0.3	-	2.0	2.0	-	0.8	0.8	-	0.8	0.8	-	3.5	3.5
Science occupations	-	0.5	0.5	-	3.0	3.0	-	1.3	1.3	-	1.2	1.2	-	5.8	5.8
Biological, agricultural, or other life scientist	-	1.0	1.0	-	6.5	6.5	-	3.1	3.1	-	2.2	2.2	-	12.1	12.1
Agriculturalfood scientist	-	5.2	5.2	-	28.8	S	-	5.4	S	-	7.4	7.4	-	S	S
Biochemist/biophysicist	-	3.0	3.0	-	28.4	S	-	13.5	13.5	-	7.6	7.6	-	S	S
Biological scientist	-	2.9	2.9	-	6.9	S	-	8.9	8.9	-	5.2	5.2	-	S	S
Forestry/conservation scientist	-	S	S	-	S	S	-	S	S	-	S	S	-	S	S
Medical scientist	-	2.0	2.0	-	13.0	13.0	-	7.5	7.5	-	5.9	5.9	-	S	S
Postsecondary teacher, agricultural/other natural sciences	-	8.3	8.3	-	S	S	-	17.8	S	-	12.4	12.4	-	S	S

Occupation	All employed other minority ${ }^{\text {a }}$			American Indian/ Alaska Native			Black			Hispanic			Native Hawaiian/Other Pacific Islander		
	Total	Male	Female												
Postsecondary teacher, biological sciences	-	3.6	3.6	-	15.2	S	-	6.5	6.5	-	5.9	5.9	-	S	S
Other biological/agricultural/ life scientist	-	5.2	5.2	-	S	S	-	14.1	14.1	-	12.9	12.9	-	S	S
Computer and information scientist	-	1.4	1.4	-	17.0	S	-	6.8	6.8	-	4.0	4.0	-	S	S
Computer/information scientist	-	1.7	1.7	-	17.0	S	-	9.3	9.3	-	5.0	5.0	-	S	S
Postsecondary teacher, computer science	-	2.9	2.9	-	S	S	-	8.0	8.0	-	3.5	S	-	S	S
Mathematical scientist	-	2.2	2.2	-	S	S	-	6.7	6.7	-	3.4	3.4	-	S	S
Mathematical scientist	-	3.5	3.5	-	S	S	-	11.1	11.1	-	7.5	7.5	-	S	S
Postsecondary teacher, mathematics/statistics	-	3.2	3.2	-	S	S	-	8.6	8.6	-	4.2	4.2	-	S	S
Physical scientist	-	1.1	1.1	-	6.7	6.7	-	3.4	3.4	-	2.5	2.5	-	S	S
Chemist, except biochemist	-	1.9	1.9	-	S	S	-	7.5	7.5	-	6.7	6.7	-	S	S
Earth/atmospheric/ocean scientist	-	2.9	2.9	-	21.2	S	-	11.2	S	-	5.2	S	-	S	S
Physicist/astronomer	-	2.9	2.9	-	27.4	S	-	8.4	S	-	6.2	6.2	-	S	S
Postsecondary teacher, chemistry	-	4.2	4.2	-	S	S	-	6.6	6.6	-	7.9	7.9	-	S	S
Postsecondary teacher, physics	-	3.8	S	-	S	S	-	8.8	S	-	4.9	S	-	S	S
Postsecondary teacher, other physical sciences	-	6.4	6.4	-	S	S	-	15.2	S	-	19.1	S	-	S	S
Other physical scientist	-	6.9	S	-	S	S	-	16.5	S	-	S	S	-	S	S
Psychologist	-	1.7	1.7	-	7.1	7.1	-	2.6	2.6	-	3.1	3.1	-	16.1	S
Psychologist	-	2.5	2.5	-	9.7	9.7	-	4.8	4.8	-	4.0	4.0	-	23.0	S
Postsecondary teacher, psychology	-	3.7	3.7	-	18.8	18.8	-	6.5	6.5	-	6.2	6.2	-	S	S
Social scientist	-	1.6	1.6	-	7.0	7.0	-	3.3	3.3	-	2.8	2.8	-	11.7	S
Economist	-	4.3	4.3	-	S	S	-	9.7	S	-	7.9	S	-	S	S
Political scientist	-	9.7	9.7	-	S	S	-	17.6	17.6	-	19.7	S	-	S	S
Postsecondary teacher, economics	-	4.5	4.5	-	S	S	-	7.3	7.3	-	7.7	S	-	S	S
Postsecondary teacher, political science	-	4.4	4.4	-	14.4	S	-	5.9	5.9	-	6.6	6.6	-	S	S
Postsecondary teacher, sociology	-	4.1	4.1	-	S	S	-	6.4	6.4	-	7.5	7.5	-	S	S
Postsecondary teacher, other social sciences	-	3.9	3.9	-	12.7	12.7	-	7.2	7.2	-	6.6	6.6	-	S	S
Sociologist/anthropologist	-	7.5	7.5	-	S	S	-	12.9	12.9	-	11.4	11.4	-	S	S
Other social scientist	-	5.9	5.9	-	S	S	-	9.9	9.9	-	13.0	13.0	-	S	S
Engineering occupations		0.8	0.8		8.8	8.8		2.4	2.4		2.2	2.2		S	S
Aerospace/aeronautical/astronautical engineer	-	3.3	3.3	-	S	S	-	S	S	-	23.2	S	-	S	S
Chemical engineer	-	3.0	3.0	-	S	S	-	9.9	S	-	7.2	S	-	S	S
Civil/architectural/sanitary engineer	-	2.7	S	-	S	S	-	S	S	-	4.2	S	-	S	S
Electrical engineer	-	1.8	1.8	-	S	S	-	6.8	S	-	8.7	8.7	-	S	S
Materials/metallurgical engineer	-	S	S	-	S	S	-	S	S	-	S	S	-	S	S
Mechanical engineer	-	2.0	S	-	S	S	-	S	S	-	8.5	S	-	S	S
Postsecondary teacher, engineering	-	1.9	1.9	-	4.8	S	-	4.6	4.6	-	4.0	4.0	-	S	S
Other engineer	-	2.3	2.3	-	S	S	-	10.6	10.6	-	5.2	5.2	-	S	S

Occupation	All employed other minority ${ }^{\text {a }}$			American Indian/ Alaska Native			Black			Hispanic			Native Hawaiian/Other Pacific Islander		
	Total	Male	Female												
Science and engineering-related occupations	-	1.7	1.7	-	10.3	10.3	-	4.4	4.4	-	4.2	4.2	-	15.9	15.9
Health occupation, except postsecondary teacher	-	3.2	3.2	-	18.1	S	-	7.3	7.3	-	7.6	7.6	-	S	S
Postsecondary teacher, health and related sciences	-	4.0	4.0	-	S	S	-	6.9	6.9	-	8.4	8.4	-	S	S
SEH manager	-	2.7	2.7	-	16.0	16.0	-	6.6	6.6	-	8.6	8.6	-	S	S
SEH precollege teacher	-	8.3	8.3	-	S	S	-	16.1	16.1	-	15.9	S	-	S	S
SEH technician/technologist	-	6.1	S	-	S	S	-	S	S	-	22.6	S	-	S	S
Other SEH-related occupation	-	S	S	-	S	S	-	S	S	-	S	S	-	S	S
Non-science and engineering occupations	-	1.4	1.4	-	7.7	7.7	-	3.0	3.0	-	3.5	3.5	-	20.3	S
Arts/humanities-related occupation	-	8.2	8.2	-	S	S	-	S	S	-	15.1	15.1	-	S	S
Management-related occupation	-	3.1	3.1	-	18.8	18.8	-	7.2	7.2	-	9.4	9.4	-	S	S
Non-SEH manager	-	1.9	1.9	-	10.4	10.4	-	5.0	5.0	-	6.0	6.0	-	S	S
Non-SEH postsecondary teacher	-	4.0	4.0	-	25.0	S	-	7.7	7.7	-	6.8	6.8	-	S	S
Non-SEH precollege/other teacher	-	10.1	10.1	-	S	S	-	18.0	18.0	-	S	17.9	-	S	S
Sales/marketing occupation	-	5.1	5.1	-	S	28.4	-	19.9	19.9	-	16.5	S	-	S	S
Social service-related occupation	-	8.8	8.8	-	S	S	-	13.6	13.6	-	15.1	15.1	-	S	S
Other non-SEH occupation	-	5.3	5.3	-	7.8	S	-	10.7	10.7	-	12.4	12.4	-	S	S

=

- = no value; standard errors are not calculated for proportions of 100%.

SEH = science, engineering, and health.
${ }^{a}$ Includes 240 non-Hispanic respondents reporting more than one race, not shown separately.
NOTE: Standard errors for numbers are rounded up to nearest 10
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-39. Standard errors for employed doctoral scientists and engineers, by occupation and citizenship status: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
	Number						
All occupations	1,640	1,750	1,410	1,060	880	870	620
Science occupations	1,890	1,990	1,700	960	820	770	530
Biological, agricultural, or other life scientist	1,120	1,150	1,050	590	580	440	360
Agricultural/food scientist	410	400	340	160	150	130	80
Biochemist/biophysicist	580	530	490	270	280	210	180
Biological scientist	730	680	590	250	280	200	200
Forestry/conservation scientist	180	170	180	60	40	40	S
Medical scientist	860	800	700	440	370	280	210
Postsecondary teacher, agricultural/other natural sciences	320	300	290	80	90	70	60
Postsecondary teacher, biological sciences	710	710	650	240	170	160	70
Other biological/agricultural/ife scientist	320	280	260	140	150	100	120
Computer and information scientist	770	720	570	440	420	380	190
Computerlinformation scientist	750	720	540	430	390	340	190
Postsecondary teacher, computer science	360	320	290	170	170	160	90
Mathematical scientist	500	510	460	290	250	230	160
Mathematical scientist	470	420	380	230	210	160	150
Postsecondary teacher, mathematics/statistics	460	420	410	230	210	190	110
Physical scientist	1,060	1,000	930	420	460	360	280
Chemist, except biochemist	600	620	530	300	280	220	180
Earth/atmospheric/ocean scientist	400	360	360	150	160	120	120
Physicist/astronomer	570	530	500	200	230	170	130
Postsecondary teacher, chemistry	470	460	430	160	140	120	80
Postsecondary teacher, physics	390	380	340	180	140	120	90
Postsecondary teacher, other physical sciences	350	340	330	90	80	70	40
Other physical scientist	240	230	210	100	90	70	80
Psychologist	860	870	850	240	190	170	90
Psychologist	850	860	840	230	140	130	80
Postsecondary teacher, psychology	590	590	560	130	110	110	40
Social scientist	830	810	760	300	300	260	160
Economist	400	370	340	170	150	110	110
Political scientist	210	200	190	50	60	30	50
Postsecondary teacher, economics	390	350	310	150	170	140	90
Postsecondary teacher, political science	350	340	330	120	100	90	50
Postsecondary teacher, sociology	350	350	330	100	80	70	40
Postsecondary teacher, other social sciences	410	400	400	130	130	120	60
Sociologist/anthropologist	300	290	290	60	60	40	40
Other social scientist	380	370	360	100	90	70	50
Engineering occupations	1,000	920	720	550	520	420	380
Aerospace/aeronautical/astronautical engineer	330	320	250	180	90	80	60
Chemical engineer	390	350	310	230	160	120	110
Civil/architectural/sanitary engineer	310	270	220	180	160	140	90
Electrical engineer	560	500	360	310	290	250	200
Materials/metallurgical engineer	170	160	140	70	60	40	50
Mechanical engineer	410	360	290	220	220	170	150
Postsecondary teacher, engineering	660	620	490	330	220	210	130
Other engineer	600	550	450	310	310	230	210
Science and engineering-related occupations	1,110	1,070	980	460	280	240	200
Health occupation, except postsecondary teacher	720	690	590	280	200	160	110
Postsecondary teacher, health and related sciences	600	580	560	200	110	90	70
SEH manager	740	710	650	360	190	170	100
SEH precollege teacher	310	320	290	130	50	50	S

TABLE A-39. Standard errors for employed doctoral scientists and engineers, by occupation and citizenship status: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
SEH technician/technologist	290	270	200	150	130	120	90
Other SEH-related occupation	90	80	80	S	40	S	S
Non-science and engineering occupations	1,350	1,320	1,280	530	380	340	200
Arts/humanities-related occupation	390	380	370	100	60	50	S
Management-related occupation	770	730	670	300	210	180	130
Non-SEH manager	1,020	1,000	880	410	180	160	80
Non-SEH postsecondary teacher	480	470	470	160	170	150	100
Non-SEH precollege/other teacher	260	250	240	90	60	60	S
Sales/marketing occupation	450	440	420	200	110	90	70
Social service-related occupation	320	310	300	100	50	S	40
Other non-SEH occupation	520	510	470	180	110	110	S
	Percent						
All occupations	-	0.1	0.1	0.2	0.1	0.1	0.1
Science occupations	-	0.2	0.2	0.2	0.2	0.2	0.1
Biological, agricultural, or other life scientist	-	0.5	0.5	0.5	0.5	0.4	0.3
Agricultural/food scientist	-	1.6	1.9	1.5	1.6	1.4	0.8
Biochemist/biophysicist	-	1.7	2.0	1.7	1.7	1.3	1.2
Biological scientist	-	1.2	1.4	1.0	1.2	0.9	0.9
Forestry/conservation scientist	-	2.0	3.5	3.2	2.0	1.9	S
Medical scientist	-	1.0	1.2	1.1	1.0	0.7	0.6
Postsecondary teacher, agricultura/other natural sciences	-	1.8	2.6	1.6	1.8	1.5	1.1
Postsecondary teacher, biological sciences	-	0.7	1.1	0.9	0.7	0.6	0.3
Other biological/agricultura/life scientist	-	2.7	3.4	2.8	2.7	1.9	2.4
Computer and information scientist	-	1.1	1.1	1.2	1.1	1.0	0.6
Computerlinformation scientist	-	1.4	1.3	1.4	1.4	1.3	0.7
Postsecondary teacher, computer science	-	2.0	2.4	2.2	2.0	2.0	1.2
Mathematical scientist	-	1.0	1.2	1.1	1.0	0.9	0.6
Mathematical scientist	-	1.9	2.4	2.2	1.9	1.6	1.3
Postsecondary teacher, mathematics/statistics	-	1.3	1.8	1.5	1.3	1.2	0.8
Physical scientist	-	0.6	0.7	0.5	0.6	0.5	0.4
Chemist, except biochemist	-	1.2	1.3	1.2	1.2	1.0	0.8
Earth/atmospheric/ocean scientist	-	1.4	1.6	1.5	1.4	1.2	1.1
Physicist/astronomer	-	1.6	1.9	1.4	1.6	1.2	0.9
Postsecondary teacher, chemistry	-	1.1	1.5	1.3	1.1	1.0	0.6
Postsecondary teacher, physics	-	1.7	2.3	2.0	1.7	1.4	1.0
Postsecondary teacher, other physical sciences	-	1.2	1.6	1.3	1.2	1.0	0.6
Other physical scientist	-	3.2	3.9	3.3	3.2	2.4	2.8
Psychologist	-	0.3	0.4	0.3	0.3	0.2	0.1
Psychologist	-	0.3	0.5	0.4	0.3	0.2	0.2
Postsecondary teacher, psychology	-	0.6	0.7	0.7	0.6	0.6	0.2
Social scientist	-	0.5	0.6	0.5	0.5	0.5	0.3
Economist	-	1.8	2.3	2.0	1.8	1.3	1.3
Political scientist	-	3.3	4.0	2.7	3.3	1.9	2.4
Postsecondary teacher, economics	-	1.7	2.0	1.6	1.7	1.4	1.0
Postsecondary teacher, political science	-	1.1	1.6	1.3	1.1	1.0	0.5
Postsecondary teacher, sociology	-	1.0	1.4	1.2	1.0	0.9	0.5
Postsecondary teacher, other social sciences	-	1.2	1.6	1.3	1.2	1.1	0.6
Sociologist/anthropologist	-	1.3	1.7	1.3	1.3	0.9	0.9
Other social scientist	-	1.2	1.7	1.4	1.2	0.9	0.7
Engineering occupations	-	0.6	0.6	0.6	0.6	0.5	0.4
Aerospace/aeronautical/astronautical engineer	-	1.6	2.8	2.8	1.6	1.3	1.0
Chemical engineer	-	2.0	2.9	2.9	2.0	1.6	1.6

TABLE A-39. Standard errors for employed doctoral scientists and engineers, by occupation and citizenship status: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
Civil/architectural/sanitary engineer	-	3.1	3.7	3.7	3.1	2.9	1.9
Electrical engineer	-	1.4	1.5	1.4	1.4	1.2	1.0
Materials/metallurgical engineer	-	5.9	8.5	6.8	5.9	3.8	4.8
Mechanical engineer	-	2.3	2.6	2.3	2.3	2.0	1.6
Postsecondary teacher, engineering	-	1.2	1.6	1.6	1.2	1.2	0.7
Other engineer	-	1.5	1.7	1.5	1.5	1.1	1.1
Science and engineering-related occupations	-	0.4	0.7	0.6	0.4	0.3	0.3
Health occupation, except postsecondary teacher	-	1.0	1.3	1.3	1.0	0.8	0.5
Postsecondary teacher, health and related sciences	-	0.6	1.2	1.1	0.6	0.5	0.4
SEH manager	-	0.8	1.5	1.4	0.8	0.7	0.4
SEH precollege teacher	-	1.4	3.4	3.3	1.4	1.2	0.8
SEH technician/technologist	-	4.1	4.4	4.2	4.1	3.8	2.9
Other SEH-related occupation	-	11.2	12.4	S	11.2	S	S
Non-science and engineering occupations	-	0.3	0.5	0.5	0.3	0.3	0.2
Arts/humanities-related occupation	-	1.1	2.1	1.9	1.1	0.9	S
Management-related occupation	-	0.9	1.4	1.2	0.9	0.7	0.6
Non-SEH manager	-	0.4	0.9	0.9	0.4	0.4	0.2
Non-SEH postsecondary teacher	-	1.3	1.8	1.2	1.3	1.2	0.8
Non-SEH precollege/other teacher	-	2.1	3.7	3.2	2.1	2.0	S
Sales/marketing occupation	-	1.3	2.6	2.4	1.3	1.1	0.8
Social service-related occupation	-	1.2	2.5	2.3	1.2	S	0.9
Other non-SEH occupation	-	1.1	2.0	1.8	1.1	1.1	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
$-=$ no value; standard errors are not calculated for proportions of 100%.
SEH = science, engineering, and health .
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
	Number								
All occupations	1,640	970	1,300	1,200	1,300	1,230	1,230	1,080	980
Science occupations	1,890	880	1,030	1,020	1,040	1,100	930	880	690
Biological, agricultural, or other life scientist	1,120	560	660	590	570	580	500	510	320
Agricultural/food scientist	410	110	160	190	200	180	200	170	110
Biochemist/biophysicist	580	270	290	240	210	210	160	140	100
Biological scientist	730	310	320	280	290	240	260	170	150
Forestry/conservation scientist	180	40	80	80	70	90	70	70	50
Medical scientist	860	380	390	360	320	310	300	260	190
Postsecondary teacher, agricultural/other natural sciences	320	100	80	150	130	140	130	140	70
Postsecondary teacher, biological sciences	710	200	240	240	320	330	280	320	220
Other biological/agricultura/life scientist	320	150	160	130	110	100	100	80	80
Computer and information scientist	770	260	350	400	350	360	350	270	210
Computerlinformation scientist	750	240	320	380	320	310	280	230	180
Postsecondary teacher, computer science	360	120	150	150	170	160	170	140	110
Mathematical scientist	500	220	250	250	280	260	220	220	220
Mathematical scientist	470	200	180	200	160	180	140	150	110
Postsecondary teacher, mathematics/statistics	460	190	190	190	220	200	190	210	190
Physical scientist	1,060	450	450	530	450	450	470	420	380
Chemist, except biochemist	600	270	270	270	300	240	260	200	190
Earth/atmospheric/ocean scientist	400	160	150	180	150	200	200	130	150
Physicist/astronomer	570	240	220	220	230	210	200	190	180
Postsecondary teacher, chemistry	470	190	190	230	190	160	170	210	200
Postsecondary teacher, physics	390	130	180	150	170	140	170	160	170
Postsecondary teacher, other physical sciences	350	100	110	140	160	150	130	140	110
Other physical scientist	240	90	110	90	100	90	60	80	80
Psychologist	860	330	390	440	440	510	490	400	320
Psychologist	850	300	320	360	340	480	430	340	300
Postsecondary teacher, psychology	590	220	220	250	230	220	250	240	180
Social scientist	830	290	450	400	410	390	430	420	340
Economist	400	110	200	160	180	140	180	180	110
Political scientist	210	70	100	80	70	S	80	80	80
Postsecondary teacher, economics	390	110	150	130	180	200	200	200	140
Postsecondary teacher, political science	350	120	150	170	160	170	170	180	150
Postsecondary teacher, sociology	350	100	150	130	150	170	160	130	140
Postsecondary teacher, other social sciences	410	140	150	150	170	170	190	180	140
Sociologist/anthropologist	300	70	130	120	90	120	160	110	90
Other social scientist	380	140	170	160	150	160	180	110	120
Engineering occupations	1,000	440	520	510	470	420	450	470	430
Aerospace/aeronautical/astronautical engineer	330	100	140	140	160	150	150	130	120
Chemical engineer	390	140	140	170	150	120	160	120	110
Civil/architectural/sanitary engineer	310	140	140	150	110	100	90	140	120
Electrical engineer	560	250	260	310	220	210	180	200	220
Materials/metallurgical engineer	170	S	40	70	80	80	50	60	60
Mechanical engineer	410	160	160	210	190	150	130	140	130
Postsecondary teacher, engineering	660	190	240	240	240	250	250	250	240
Other engineer	600	280	260	230	270	260	200	220	200
Science and engineering-related occupations	1,110	310	410	490	500	560	490	400	320
Health occupation, except postsecondary teacher	720	250	250	250	270	270	260	280	220
Postsecondary teacher, health and related sciences	600	130	180	220	220	320	290	200	190
SEH manager	740	120	210	310	320	350	320	260	150
SEH precollege teacher	310	50	100	90	130	130	150	110	100
SEH technician/technologist	290	100	110	110	110	110	100	90	60

All									
Occupation	employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
Other SEH-related occupation	90	S	50	S	S	S	S	50	S
Non-science and engineering occupations	1,350	360	510	480	530	590	660	600	480
Arts/humanities-related occupation	390	70	130	120	120	140	140	180	160
Management-related occupation	770	220	300	250	290	280	340	260	190
Non-SEH manager	1,020	120	210	360	380	430	490	420	320
Non-SEH postsecondary teacher	480	140	210	180	180	210	240	220	160
Non-SEH precollege/other teacher	260	60	90	70	100	120	100	80	100
Sales/marketing occupation	450	120	160	180	170	180	190	180	160
Social service-related occupation	320	70	100	100	90	130	150	140	150
Other non-SEH occupation	520	110	160	160	190	170	210	180	180
	Percent								
All occupations	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Science occupations	-	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2
Biological, agricultural, or other life scientist	-	0.5	0.6	0.5	0.5	0.5	0.4	0.4	0.3
Agricultural/food scientist	-	1.1	1.5	1.9	2.0	1.9	2.1	1.7	1.1
Biochemist/biophysicist	-	1.6	1.8	1.4	1.3	1.3	1.0	0.9	0.7
Biological scientist	-	1.2	1.4	1.2	1.3	1.1	1.1	0.8	0.6
Forestry/conservation scientist	-	2.2	4.1	4.2	3.6	4.7	3.8	3.8	2.9
Medical scientist	-	0.9	1.0	1.0	0.8	0.9	0.8	0.7	0.5
Postsecondary teacher, agricultural/other natural sciences	-	1.9	1.7	2.8	2.6	2.9	2.6	2.7	1.4
Postsecondary teacher, biological sciences	-	0.8	0.9	0.9	1.2	1.2	1.0	1.2	0.8
Other biological/agricultura/l/ife scientist	-	2.7	3.1	2.5	2.1	1.8	2.1	1.4	1.6
Computer and information scientist	-	0.7	1.0	1.1	1.1	1.0	0.9	0.7	0.6
Computerlinformation scientist	-	0.9	1.2	1.3	1.2	1.1	0.9	0.8	0.6
Postsecondary teacher, computer science	-	1.6	1.9	1.9	2.1	2.1	2.3	1.8	1.5
Mathematical scientist	-	0.8	1.0	0.9	1.1	1.0	0.8	0.9	0.9
Mathematical scientist	-	1.6	1.7	1.7	1.6	1.6	1.3	1.4	1.1
Postsecondary teacher, mathematics/statistics	-	1.1	1.3	1.3	1.4	1.3	1.2	1.3	1.3
Physical scientist	-	0.6	0.6	0.7	0.6	0.6	0.6	0.5	0.5
Chemist, except biochemist	-	1.2	1.1	1.2	1.2	0.9	1.1	0.9	0.8
Earth/atmospheric/ocean scientist	-	1.5	1.4	1.7	1.6	1.8	1.8	1.3	1.4
Physicist/astronomer	-	1.7	1.5	1.5	1.6	1.4	1.4	1.4	1.2
Postsecondary teacher, chemistry	-	1.5	1.6	1.8	1.5	1.3	1.4	1.5	1.4
Postsecondary teacher, physics	-	1.5	1.9	1.7	1.9	1.6	1.9	1.7	1.9
Postsecondary teacher, other physical sciences	-	1.4	1.5	2.0	2.1	2.2	1.8	2.0	1.6
Other physical scientist	-	3.0	3.7	3.1	3.5	2.9	2.1	2.7	2.6
Psychologist	-	0.5	0.6	0.6	0.6	0.7	0.7	0.6	0.5
Psychologist	-	0.6	0.6	0.7	0.6	0.8	0.8	0.7	0.6
Postsecondary teacher, psychology	-	1.2	1.2	1.4	1.2	1.2	1.3	1.2	0.9
Social scientist	-	0.5	0.8	0.7	0.7	0.7	0.7	0.7	0.6
Economist	-	1.3	2.4	2.1	2.2	1.7	2.2	2.2	1.3
Political scientist	-	4.0	4.8	4.2	3.9	S	4.2	4.3	4.3
Postsecondary teacher, economics	-	1.2	1.6	1.4	1.9	2.2	2.2	2.1	1.5
Postsecondary teacher, political science	-	1.3	1.9	1.8	1.7	1.9	1.9	2.0	1.6
Postsecondary teacher, sociology	-	1.3	1.8	1.5	1.8	2.1	2.0	1.6	1.7
Postsecondary teacher, other social sciences	-	1.4	1.4	1.4	1.5	1.7	1.7	1.8	1.3
Sociologist/anthropologist	-	1.5	2.6	2.7	1.9	2.8	3.3	2.3	2.0
Other social scientist	-	2.0	2.1	2.2	2.0	2.0	2.4	1.6	1.6
Engineering occupations	-	0.6	0.6	0.6	0.6	0.5	0.5	0.6	0.5
Aerospace/aeronautical/astronautical engineer	-	1.8	2.5	2.4	2.9	2.6	2.5	2.2	2.1
Chemical engineer	-	1.9	1.8	2.0	1.9	1.7	2.0	1.5	1.5
Civil/architectural/sanitary engineer	-	3.0	2.9	3.0	2.5	2.1	1.9	2.7	2.4
Electrical engineer	-	1.3	1.4	1.5	1.1	1.1	0.9	1.0	1.1

All									
Occupation	employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
Materials/metallurgical engineer	-	S	4.0	6.9	7.6	6.9	4.9	6.0	5.3
Mechanical engineer	-	1.7	1.8	2.3	2.2	1.7	1.5	1.6	1.5
Postsecondary teacher, engineering	-	1.0	1.2	1.4	1.2	1.4	1.4	1.3	1.2
Other engineer	-	1.4	1.3	1.2	1.4	1.2	1.0	1.1	1.0
Science and engineering-related occupations	-	0.4	0.6	0.7	0.7	0.7	0.7	0.6	0.5
Health occupation, except postsecondary teacher	-	1.1	1.1	1.3	1.2	1.3	1.2	1.3	1.0
Postsecondary teacher, health and related sciences	-	0.8	1.0	1.2	1.2	1.7	1.5	1.1	1.0
SEH manager	-	0.5	0.9	1.2	1.3	1.4	1.2	1.1	0.6
SEH precollege teacher	-	1.1	2.4	2.3	3.3	3.2	3.6	2.8	2.5
SEH technician/technologist	-	3.3	3.7	3.6	3.3	3.2	3.2	2.8	1.7
Other SEH-related occupation	-	S	12.7	S	S	S	S	13.5	S
Non-science and engineering occupations	-	0.3	0.5	0.4	0.5	0.5	0.6	0.5	0.4
Arts/humanities-related occupation	-	1.3	2.4	2.1	2.1	2.5	2.3	3.0	2.7
Management-related occupation	-	0.9	1.1	1.1	1.2	1.1	1.5	1.1	0.8
Non-SEH manager	-	0.3	0.5	0.8	0.8	0.9	1.0	0.9	0.7
Non-SEH postsecondary teacher	-	1.0	1.6	1.4	1.4	1.6	1.8	1.6	1.2
Non-SEH precollege/other teacher	-	2.0	3.0	2.4	3.3	3.8	3.1	2.6	3.6
Sales/marketing occupation	-	1.4	1.8	2.0	2.1	2.0	2.2	2.0	1.8
Social service-related occupation	-	1.7	2.2	2.2	2.0	3.0	3.2	3.3	3.2
Other non-SEH occupation	-	1.1	1.7	1.7	2.0	1.7	2.1	1.7	1.7

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.

SEH = science, engineering, and health.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-41. Standard errors for employed doctoral scientists and engineers, by occupation and years since doctorate: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
	Number						
All occupations	1,640	800	930	900	850	880	1,280
Science occupations	1,890	880	860	760	810	850	1,210
Biological, agricultural, or other life scientist	1,120	580	540	530	480	470	600
Agricultural/food scientist	410	160	170	180	170	160	220
Biochemist/biophysicist	580	300	280	240	200	160	210
Biological scientist	730	380	290	230	230	210	330
Forestry/conservation scientist	180	90	80	80	60	80	80
Medical scientist	860	460	350	390	240	290	380
Postsecondary teacher, agricultura//other natural sciences	320	130	140	130	140	110	180
Postsecondary teacher, biological sciences	710	250	280	280	280	260	420
Other biological/agricultural/life scientist	320	220	170	100	100	80	130
Computer and information scientist	770	320	340	340	270	260	430
Computer/information scientist	750	310	320	340	270	250	360
Postsecondary teacher, computer science	360	150	190	170	120	110	200
Mathematical scientist	500	300	230	260	260	180	330
Mathematical scientist	470	240	200	180	180	130	200
Postsecondary teacher, mathematics/statistics	460	230	220	200	200	150	300
Physical scientist	1,060	480	410	430	420	400	630
Chemist, except biochemist	600	290	300	250	250	250	350
Earth/atmospheric/ocean scientist	400	190	160	150	160	150	250
Physicist/astronomer	570	250	200	210	190	190	290
Postsecondary teacher, chemistry	470	180	210	200	160	140	320
Postsecondary teacher, physics	390	150	160	140	170	140	230
Postsecondary teacher, other physical sciences	350	130	140	150	130	160	200
Other physical scientist	240	150	100	90	70	90	140
Psychologist	860	320	370	370	360	370	460
Psychologist	850	330	360	350	330	350	420
Postsecondary teacher, psychology	590	200	260	250	230	230	320
Social scientist	830	430	340	340	290	290	530
Economist	400	160	170	150	130	160	250
Political scientist	210	120	80	70	50	40	130
Postsecondary teacher, economics	390	150	140	140	150	130	260
Postsecondary teacher, political science	350	160	140	160	110	140	220
Postsecondary teacher, sociology	350	140	140	150	140	120	190
Postsecondary teacher, other social sciences	410	230	200	190	140	140	250
Sociologist/anthropologist	300	150	120	90	120	110	160
Other social scientist	380	220	190	150	140	130	190
Engineering occupations	1,000	480	510	440	340	360	610
Aerospace/aeronautical/astronautical engineer	330	130	120	150	130	120	190
Chemical engineer	390	160	150	170	130	110	190
Civil/architectural/sanitary engineer	310	160	150	100	100	100	170
Electrical engineer	560	250	300	230	190	170	280
Materials/metallurgical engineer	170	50	60	70	60	50	110
Mechanical engineer	410	190	170	190	120	100	210
Postsecondary teacher, engineering	660	230	260	240	210	200	380
Other engineer	600	310	260	250	180	230	310
Science and engineering-related occupations	1,110	420	480	550	420	440	560
Health occupation, except postsecondary teacher	720	310	270	300	240	250	370
Postsecondary teacher, health and related sciences	600	230	230	230	230	200	330
SEH manager	740	160	310	380	280	320	390
SEH precollege teacher	310	90	130	120	110	100	180
SEH technician/technologist	290	130	130	110	90	90	120

TABLE A-41. Standard errors for employed doctoral scientists and engineers, by occupation and years since doctorate: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
Other SEH-related occupation	90	S	60	S	S	S	50
Non-science and engineering occupations	1,350	500	560	560	580	550	830
Arts/humanities-related occupation	390	130	130	130	120	140	250
Management-related occupation	770	250	330	290	290	260	370
Non-SEH manager	1,020	190	280	380	390	410	680
Non-SEH postsecondary teacher	480	240	190	180	160	200	290
Non-SEH precollege/other teacher	260	100	110	90	130	110	120
Sales/marketing occupation	450	150	190	180	150	180	260
Social service-related occupation	320	140	120	140	90	110	180
Other non-SEH occupation	520	160	200	160	200	160	280
	Percent						
All occupations	-	0.1	0.1	0.1	0.1	0.1	0.2
Science occupations	-	0.2	0.2	0.2	0.2	0.2	0.3
Biological, agricultural, or other life scientist	-	0.5	0.4	0.5	0.4	0.4	0.5
Agricultural/food scientist	-	1.5	1.7	1.7	1.8	1.6	2.1
Biochemist/biophysicist	-	1.6	1.7	1.3	1.2	1.0	1.4
Biological scientist	-	1.3	1.2	1.0	1.0	1.0	1.4
Forestry/conservation scientist	-	4.2	4.1	4.3	3.4	4.0	4.2
Medical scientist	-	1.1	0.9	1.0	0.6	0.8	0.9
Postsecondary teacher, agricultural/other natural sciences	-	2.4	2.8	2.5	2.7	2.4	3.4
Postsecondary teacher, biological sciences	-	0.9	1.0	1.0	1.0	1.0	1.3
Other biological/agricultural/life scientist	-	3.5	3.3	2.0	1.9	1.7	2.5
Computer and information scientist	-	0.8	1.0	1.0	0.7	0.7	1.1
Computer/information scientist	-	1.0	1.2	1.1	0.9	0.9	1.1
Postsecondary teacher, computer science	-	1.9	2.3	2.1	1.5	1.5	2.4
Mathematical scientist	-	1.0	0.9	1.0	1.0	0.7	1.2
Mathematical scientist	-	1.9	1.9	1.7	1.7	1.2	1.8
Postsecondary teacher, mathematics/statistics	-	1.4	1.4	1.3	1.4	1.0	1.8
Physical scientist	-	0.6	0.5	0.6	0.5	0.5	0.7
Chemist, except biochemist	-	1.2	1.3	1.1	1.0	1.1	1.3
Earth/atmospheric/ocean scientist	-	1.7	1.5	1.3	1.6	1.4	2.1
Physicist/astronomer	-	1.6	1.4	1.4	1.3	1.2	1.8
Postsecondary teacher, chemistry	-	1.4	1.7	1.7	1.3	1.1	2.0
Postsecondary teacher, physics	-	1.6	1.8	1.6	1.9	1.7	2.3
Postsecondary teacher, other physical sciences	-	1.9	1.8	2.0	2.0	2.2	2.5
Other physical scientist	-	4.8	3.5	3.1	2.4	3.0	4.3
Psychologist	-	0.4	0.5	0.5	0.5	0.5	0.6
Psychologist	-	0.6	0.7	0.6	0.6	0.6	0.7
Postsecondary teacher, psychology	-	1.1	1.4	1.3	1.2	1.2	1.4
Social scientist	-	0.7	0.5	0.6	0.5	0.5	0.8
Economist	-	1.9	2.1	1.8	1.6	2.0	2.8
Political scientist	-	5.5	4.5	4.1	2.9	2.4	6.3
Postsecondary teacher, economics	-	1.5	1.4	1.6	1.6	1.5	2.3
Postsecondary teacher, political science	-	1.8	1.6	1.7	1.2	1.5	2.1
Postsecondary teacher, sociology	-	1.9	1.7	1.8	1.7	1.4	2.1
Postsecondary teacher, other social sciences	-	2.2	1.8	1.9	1.4	1.3	2.2
Sociologist/anthropologist	-	3.0	2.6	2.0	2.8	2.3	3.3
Other social scientist	-	2.6	2.4	2.2	1.8	1.8	2.5
Engineering occupations	-	0.6	0.6	0.5	0.4	0.4	0.6
Aerospace/aeronautical/astronautical engineer	-	2.3	2.1	2.5	2.2	2.1	3.0
Chemical engineer	-	1.9	1.8	2.1	1.7	1.4	2.1
Civil/architectural/sanitary engineer	-	3.1	3.0	2.2	2.0	2.2	3.0

TABLE A-41. Standard errors for employed doctoral scientists and engineers, by occupation and years since doctorate: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
Electrical engineer	-	1.2	1.5	1.2	1.0	0.9	1.4
Materials/metallurgical engineer	-	5.1	5.6	6.6	5.5	4.6	9.3
Mechanical engineer	-	1.8	1.8	2.1	1.4	1.1	2.2
Postsecondary teacher, engineering	-	1.2	1.3	1.3	1.1	1.1	1.7
Other engineer	-	1.5	1.4	1.2	0.9	1.1	1.4
Science and engineering-related occupations	-	0.6	0.7	0.7	0.6	0.6	0.8
Health occupation, except postsecondary teacher	-	1.3	1.3	1.3	1.1	1.2	1.5
Postsecondary teacher, health and related sciences	-	1.3	1.3	1.2	1.2	1.1	1.6
SEH manager	-	0.7	1.2	1.4	1.2	1.4	1.4
SEH precollege teacher	-	2.2	2.9	3.0	2.9	2.6	4.2
SEH technician/technologist	-	4.1	3.9	3.5	2.5	2.9	3.6
Other SEH-related occupation	-	S	13.5	S	S	S	14.4
Non-science and engineering occupations	-	0.5	0.5	0.5	0.5	0.5	0.7
Arts/humanities-related occupation	-	2.2	2.4	2.2	2.0	2.4	3.6
Management-related occupation	-	1.0	1.3	1.1	1.2	1.1	1.4
Non-SEH manager	-	0.4	0.6	0.8	0.9	0.9	1.2
Non-SEH postsecondary teacher	-	1.7	1.5	1.4	1.2	1.5	1.9
Non-SEH precollege/other teacher	-	3.6	3.5	3.0	4.2	3.7	4.3
Sales/marketing occupation	-	1.7	2.2	2.0	1.8	2.0	2.7
Social service-related occupation	-	3.3	2.7	3.1	2.1	2.5	3.7
Other non-SEH occupation	-	1.6	2.0	1.6	2.0	1.6	2.3

$\mathrm{S}=$ suppressed for reliability or confidentiality.
$-=$ no value; standard errors are not calculated for proportions of 100%.
SEH = science, engineering, and health.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4 -year institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private	Private non-profit	Federal government	State and local government	$\begin{array}{r} \text { Self- } \\ \text { employed }^{\text {d }} \end{array}$	Other ${ }^{\text {e }}$
					Number				
All occupations	1,640	1,970	700	1,630	990	1,020	670	1,010	190
Science occupations	1,890	1,770	550	1,260	690	740	490	740	150
Biological, agricultural, or other life scientist	1,120	1,080	290	700	450	490	270	240	50
Agricultural/food scientist	410	260	S	240	90	190	70	90	S
Biochemist/biophysicist	580	440	S	340	180	150	60	80	S
Biological scientist	730	510	S	250	200	310	170	130	S
Forestry/conservation scientist	180	100	S	70	70	110	70	50	S
Medical scientist	860	670	S	480	260	300	140	150	S
Postsecondary teacher, agricultural/ other natural sciences	320	320	60	S	S	S	S	S	S
Postsecondary teacher, biological sciences	710	660	270	S	S	S	S	S	S
Other biological/agricultural/Ife scientist	320	220	S	210	120	100	80	70	S
Computer and information scientist	770	440	70	640	230	140	170	210	S
Computerlinformation scientist	750	270	S	640	230	140	160	210	S
Postsecondary teacher, computer science	360	350	70	S	S	S	S	S	S
Mathematical scientist	500	470	160	340	170	170	80	110	S
Mathematical scientist	470	220	40	330	170	170	80	110	S
Postsecondary teacher, mathematics/statistics	460	450	150	S	S	S	S	S	S
Physical scientist	1,060	740	270	660	290	300	250	230	S
Chemist, except biochemist	600	250	S	540	150	170	130	150	S
Earth/atmospheric/ocean scientist	400	220	S	210	140	230	140	110	S
Physicist/astronomer	570	310	S	330	220	200	140	80	S
Postsecondary teacher, chemistry	470	420	220	S	S	S	S	S	S
Postsecondary teacher, physics	390	370	140	S	S	S	S	S	S
Postsecondary teacher, other physical sciences	350	360	80	S	S	S	S	S	S
Other physical scientist	240	90	S	160	60	90	80	80	S
Psychologist	860	670	330	470	350	250	300	600	S
Psychologist	850	510	290	480	350	250	300	600	S
Postsecondary teacher, psychology	590	590	150	S	S	S	S	S	S
Social scientist	830	770	220	320	270	260	170	190	130
Economist	400	220	S	210	130	220	80	110	130
Political scientist	210	170	S	60	80	70	60	50	S
Postsecondary teacher, economics	390	390	80	S	S	S	S	S	S
Postsecondary teacher, political science	350	340	90	S	S	S	S	S	S
Postsecondary teacher, sociology	350	330	100	S	S	S	S	S	S
Postsecondary teacher, other social sciences	410	410	100	S	S	S	S	S	S
Sociologist/anthropologist	300	210	S	120	110	130	100	60	S
Other social scientist	380	230	80	180	190	110	110	140	S
Engineering occupations	1,000	750	110	730	300	310	230	330	S
Aerospace/aeronautical/astronautical engineer	330	90	S	280	100	140	50	90	S
Chemical engineer	390	110	S	360	70	80	50	70	S
Civil/architectural/sanitary engineer	310	110	S	230	70	70	140	130	S
Electrical engineer	560	250	S	480	180	150	90	170	S
Materials/metallurgical engineer	170	60	S	140	S	S	S	70	S
Mechanical engineer	410	160	S	360	60	110	70	110	S
Postsecondary teacher, engineering	660	660	90	S	S	S	S	S	S
Other engineer	600	280	S	540	140	200	140	140	S
Science and engineering-related occupations	1,110	720	330	680	390	320	260	220	50
Health occupation, except postsecondary teacher	720	410	60	350	260	230	130	210	S
Postsecondary teacher, health and related sciences	600	610	100	60	S	S	S	S	S

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4 -year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State and local government	$\begin{array}{r} \text { Self- } \\ \text { employed }^{\text {d }} \end{array}$	Other ${ }^{\text {e }}$
SEH manager	740	250	50	530	250	230	220	80	40
SEH precollege teacher	310	S	310	S	S	S	S	S	S
SEH technician/technologist	290	100	S	230	50	60	60	60	S
Other SEH-related occupation	90	S	S	70	S	S	50	S	S
Non-science and engineering occupations	1,350	890	320	930	440	400	300	550	100
Arts/humanities-related occupation	390	110	S	250	120	50	60	250	S
Management-related occupation	770	250	110	560	210	260	150	270	S
Non-SEH manager	1,020	640	190	640	350	230	180	150	100
Non-SEH postsecondary teacher	480	450	120	S	S	40	S	S	S
Non-SEH precollege/other teacher	260	50	200	100	80	S	60	120	S
Sales/marketing occupation	450	60	S	410	60	40	50	190	S
Social service-related occupation	320	130	120	130	190	40	80	130	S
Other non-SEH occupation	520	160	80	330	140	160	150	240	S
	Percent								
All occupations	-	0.3	0.1	0.3	0.2	0.2	0.1	0.2	0.1
Science occupations	-	0.4	0.1	0.3	0.2	0.1	0.2	0.2	0.1
Biological, agricultural, or other life scientist	-	0.7	0.2	0.6	0.4	0.4	0.2	0.2	S
Agricultural/food scientist	-	2.4	S	2.2	0.9	1.9	0.7	0.9	S
Biochemist/biophysicist	-	2.1	S	1.9	1.2	1.0	0.4	0.5	S
Biological scientist	-	1.6	S	1.0	0.9	1.3	0.7	0.6	S
Forestry/conservation scientist	-	4.9	S	3.6	3.6	5.6	3.8	2.7	S
Medical scientist	-	1.3	S	1.2	0.7	0.8	0.4	0.4	S
Postsecondary teacher, agricultural/ other natural sciences	-	1.2	1.2	S	S	S	S	S	S
Postsecondary teacher, biological sciences	-	1.0	1.0	S	S	S	S	S	S
Other biological/agricultural/life scientist	-	3.8	S	3.6	2.3	2.0	1.6	1.4	S
Computer and information scientist	-	1.2	0.2	1.4	0.6	0.4	0.5	0.6	S
Computerlinformation scientist	-	1.0	S	1.5	0.8	0.5	0.6	0.8	S
Postsecondary teacher, computer science	-	1.1	1.0	S	S	S	0.4	S	S
Mathematical scientist	-	1.5	0.6	1.3	0.7	0.7	0.3	0.5	S
Mathematical scientist	-	1.9	0.4	2.4	1.6	1.6	0.7	1.1	S
Postsecondary teacher, mathematics/statistics	-	1.0	1.0	S	S	S	S	S	S
Physical scientist	-	0.8	0.4	0.7	0.4	0.4	0.3	0.3	S
Chemist, except biochemist	-	1.1	S	1.5	0.6	0.7	0.5	0.6	S
Earth/atmospheric/ocean scientist	-	2.0	S	2.1	1.3	2.0	1.3	1.0	S
Physicist/astronomer	-	1.9	S	2.1	1.5	1.3	1.0	0.5	S
Postsecondary teacher, chemistry	-	1.7	1.6	S	S	S	S	S	S
Postsecondary teacher, physics	-	1.6	1.6	S	S	S	S	S	S
Postsecondary teacher, other physical sciences	-	1.3	1.1	S	S	S	S	S	S
Other physical scientist	-	3.0	S	4.2	2.0	2.8	2.5	2.6	S
Psychologist	-	0.9	0.5	0.7	0.5	0.4	0.4	0.8	S
Psychologist	-	0.9	0.6	0.9	0.7	0.5	0.6	1.0	S
Postsecondary teacher, psychology	-	0.8	0.8	S	S	S	S	S	S
Social scientist	-	1.0	0.4	0.6	0.5	0.5	0.3	0.3	0.2
Economist	-	2.5	S	2.3	1.5	2.6	1.0	1.3	1.6
Political scientist	-	6.7	S	3.3	4.1	4.0	3.1	3.0	S
Postsecondary teacher, economics	-	0.9	0.9	S	S	S	S	S	S
Postsecondary teacher, political science	-	1.0	1.0	S	S	S	S	S	S
Postsecondary teacher, sociology	-	1.2	1.2	S	S	S	S	S	S
Postsecondary teacher, other social sciences	-	1.0	0.9	S	S	S	S	S	S
Sociologist/anthropologist	-	3.8	S	2.7	2.3	2.8	2.1	1.4	S

TABLE A-42. Standard errors for employed doctoral scientists and engineers, by occupation and sector of employment: 2006

Occupation	$\begin{array}{r} \text { All } \\ \text { employed } \end{array}$	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State and local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
Other social scientist	-	2.8	1.1	2.3	2.5	1.4	1.5	1.9	S
Engineering occupations	-	0.8	0.1	0.8	0.4	0.4	0.3	0.4	S
Aerospace/aeronautical/astronautical engineer	-	1.5	S	3.6	1.8	2.4	0.9	1.7	S
Chemical engineer	-	1.4	S	2.3	0.9	1.1	0.6	0.9	S
Civil/architectural/sanitary engineer	-	2.3	S	4.3	1.4	1.5	2.9	2.7	S
Electrical engineer	-	1.3	S	1.6	0.9	0.8	0.5	0.9	S
Materials/metallurgical engineer	-	5.1	S	8.1	S	S	S	6.9	S
Mechanical engineer	-	1.8	S	2.5	0.7	1.3	0.8	1.3	S
Postsecondary teacher, engineering	-	0.5	0.5	S	S	S	S	S	S
Other engineer	-	1.4	S	2.0	0.7	1.0	0.7	0.7	S
Science and engineering-related occupations	-	0.9	0.5	0.8	0.5	0.5	0.4	0.3	0.1
Health occupation, except postsecondary teacher	-	1.7	0.3	1.4	1.2	1.1	0.7	1.0	S
Postsecondary teacher, health and related sciences	-	0.7	0.6	0.3	S	S	S	0.1	S
SEH manager	-	1.0	0.2	1.6	1.1	0.9	0.9	0.3	0.2
SEH precollege teacher	-	S	0.9	S	S	S	S	S	S
SEH technician/technologist	-	3.4	S	3.9	1.6	2.1	1.8	1.7	S
Other SEH-related occupation	-	S	S	13.5	S	S	12.8	S	S
Non-science and engineering occupations	-	0.8	0.3	0.8	0.4	0.4	0.3	0.5	0.1
Arts/humanities-related occupation	-	2.0	S	3.8	2.0	0.9	0.9	3.8	S
Management-related occupation	-	1.1	0.5	1.7	0.9	1.0	0.7	1.1	S
Non-SEH manager	-	1.2	0.4	1.2	0.8	0.6	0.4	0.4	0.2
Non-SEH postsecondary teacher	-	1.0	0.9	S	S	0.3	S	S	S
Non-SEH precollege/other teacher	-	1.8	5.4	3.3	2.8	S	2.2	4.3	S
Sales/marketing occupation	-	0.7	S	2.3	0.6	0.5	0.5	2.2	S
Social service-related occupation	-	3.0	2.8	2.8	4.0	0.9	1.8	3.0	S
Other non-SEH occupation	-	1.7	0.8	2.9	1.4	1.6	1.5	2.4	S

S = suppressed for reliability or confidentiality.
$-=$ no value; standard errors are not calculated for proportions of 100%.
SEH = science, engineering, and health.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-43. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 2006

Employment sector and occupation	All employed	Male	Female	All employed	Male	Female
	Number			Percent		
All sectors	1,640	1,320	880	-	0.1	0.1
Science occupations	1,890	1,630	990	-	0.2	0.2
Biological, agricultural, or other life scientist	1,120	950	620	-	0.5	0.5
Computer and information scientist	770	730	300	-	0.9	0.9
Mathematical scientist	500	480	280	-	1.0	1.0
Physical scientist	1,060	980	380	-	0.5	0.5
Psychologist	860	550	620	-	0.6	0.6
Social scientist	830	690	440	-	0.7	0.7
Engineering occupations	1,000	960	320	-	0.4	0.4
SEH-related occupations	1,110	850	610	-	0.7	0.7
Non-SEH occupations	1,350	1,210	720	-	0.6	0.6
4 -year educational institutions ${ }^{\text {a }}$	1,970	1,680	1,250	-	0.4	0.4
Science occupations	1,770	1,390	1,110	-	0.5	0.5
Biological, agricultural, or other life scientist	1,080	770	700	-	0.7	0.7
Computer and information scientist	440	450	150	-	1.6	1.6
Mathematical scientist	470	440	230	-	1.4	1.4
Physical scientist	740	690	340	-	0.9	0.9
Psychologist	670	540	510	-	1.6	1.6
Social scientist	770	690	400	-	0.9	0.9
Engineering occupations	750	710	240	-	0.9	0.9
SEH-related occupations	720	570	430	-	1.4	1.4
Non-SEH occupations	890	710	470	-	1.3	1.3
Other educational institutions ${ }^{\text {b }}$	700	550	460	-	1.7	1.7
Science occupations	550	450	340	-	2.3	2.3
Biological, agricultural, or other life scientist	290	230	180	-	4.8	4.8
Computer and information scientist	70	80	S	-	2.8	S
Mathematical scientist	160	140	50	-	5.0	5.0
Physical scientist	270	250	110	-	3.8	3.8
Psychologist	330	220	240	-	4.1	4.1
Social scientist	220	160	130	-	5.2	5.2
Engineering occupations	110	110	S	-	-	S
SEH-related occupations	330	270	180	-	3.7	3.7
Non-SEH occupations	320	240	250	-	3.9	3.9
Private for-profit ${ }^{\text {c }}$	1,630	1,410	850	-	0.4	0.4
Science occupations	1,260	1,120	670	-	0.7	0.7
Biological, agricultural, or other life scientist	700	570	390	-	1.4	1.4
Computer and information scientist	640	620	240	-	1.2	1.2
Mathematical scientist	340	320	130	-	2.6	2.6
Physical scientist	660	610	240	-	0.9	0.9
Psychologist	470	370	340	-	2.4	2.4
Social scientist	320	290	140	-	3.2	3.2
Engineering occupations	730	680	270	-	0.6	0.6
SEH-related occupations	680	620	310	-	1.3	1.3
Non-SEH occupations	930	810	460	-	0.9	0.9
Private non-profit	990	910	540	-	1.3	1.3
Science occupations	690	630	420	-	1.8	1.8
Biological, agricultural, or other life scientist	450	360	270	-	3.0	3.0
Computer and information scientist	230	200	60	-	3.5	3.5
Mathematical scientist	170	150	90	-	7.5	7.5
Physical scientist	290	300	110	-	2.6	2.6
Psychologist	350	270	280	-	3.9	3.9
Social scientist	270	190	190	-	4.8	4.8
Engineering occupations	300	280	80	-	2.7	2.7
SEH-related occupations	390	310	240	-	3.3	3.3
Non-SEH occupations	440	360	300	-	2.8	2.8
Federal government	1,020	820	520	-	1.1	1.1
Science occupations	740	610	430	-	1.4	1.4

TABLE A-43. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 2006

Employment sector and occupation	All employed	Male	Female	All employed	Male	Female
	Number			Percent		
Biological, agricultural, or other life scientist	490	390	300	-	2.2	2.2
Computer and information scientist	140	130	50	-	7.0	7.0
Mathematical scientist	170	160	80	-	5.4	5.4
Physical scientist	300	290	140	-	2.2	2.2
Psychologist	250	210	160	-	5.2	5.2
Social scientist	260	220	170	-	3.7	3.7
Engineering occupations	310	300	110	-	2.3	2.3
SEH-related occupations	320	260	180	-	3.2	3.2
Non-SEH occupations	400	320	210	-	3.2	3.2
State and local government	670	580	370	-	1.7	1.7
Science occupations	490	420	270	-	2.2	2.2
Biological, agricultural, or other life scientist	270	210	130	-	4.1	4.1
Computer and information scientist	170	140	70	-	5.7	5.7
Mathematical scientist	80	60	60	-	16.7	16.7
Physical scientist	250	230	80	-	2.9	2.9
Psychologist	300	230	200	-	4.6	4.6
Social scientist	170	150	100	-	6.7	6.7
Engineering occupations	230	220	100	-	5.1	5.1
SEH-related occupations	260	240	130	-	4.5	4.5
Non-SEH occupations	300	250	190	-	4.5	4.5
Self-employed ${ }^{\text {d }}$	1,010	790	610	-	1.2	1.2
Science occupations	740	580	480	-	1.5	1.5
Biological, agricultural, or other life scientist	240	200	130	-	5.0	5.0
Computer and information scientist	210	200	50	-	3.6	3.6
Mathematical scientist	110	100	60	-	11.2	11.2
Physical scientist	230	210	70	-	3.7	3.7
Psychologist	600	450	420	-	1.8	1.8
Social scientist	190	140	120	-	6.5	6.5
Engineering occupations	330	320	50	-	1.5	1.5
SEH-related occupations	220	180	140	-	4.6	4.6
Non-SEH occupations	550	420	340	-	2.6	2.6
Other sector ${ }^{\text {e }}$	190	180	90	-	5.8	5.8
Science occupations	150	140	80	-	6.8	6.8
Biological, agricultural, or other life scientist	50	S	50	-	S	19.9
Computer and information scientist	S	S	S	-	S	S
Mathematical scientist	S	S	S	-	S	S
Physical scientist	S	S	S	-	S	S
Psychologist	S	S	S	-	S	S
Social scientist	130	130	60	-	6.3	6.3
Engineering occupations	S	S	S	-	S	S
SEH-related occupations	50	S	S	-	S	S
Non-SEH occupations	100	100	S	-	9.4	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100\%.

SEH = science, engineering, and health.
${ }^{\text {a }} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and universityaffiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{d}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-44. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006

Employment sector and occupation	All employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{\text {a }}$
	Number						
All sectors	1,640	160	800	310	310	1,390	100
Science occupations	1,890	160	860	340	300	1,730	90
Biological, agricultural, or other life scientist	1,120	120	490	170	180	1,060	50
Computer and information scientist	770	50	450	80	90	630	S
Mathematical scientist	500	S	300	90	100	480	S
Physical scientist	1,060	80	470	120	150	900	40
Psychologist	860	90	150	160	160	810	60
Social scientist	830	100	230	180	120	770	50
Engineering occupations	1,000	90	640	130	130	770	S
SEH-related occupations	1,110	90	500	210	160	990	60
Non-science and engineering occupations	1,350	140	540	240	180	1,320	60
4-year educational institutions ${ }^{\text {b }}$	1,970	170	800	360	280	1,870	80
Science occupations	1,770	160	680	320	260	1,610	80
Biological, agricultural, or other life scientist	1,080	110	500	160	150	960	30
Computer and information scientist	440	S	230	40	70	400	S
Mathematical scientist	470	S	260	80	100	420	S
Physical scientist	740	80	290	100	110	680	40
Psychologist	670	70	110	160	130	700	60
Social scientist	770	100	210	150	100	690	30
Engineering occupations	750	70	420	120	120	600	S
SEH-related occupations	720	40	270	140	100	650	S
Non-SEH occupations	890	80	240	160	110	820	S
Other educational institutions ${ }^{\text {c }}$	700	50	160	170	140	630	S
Science occupations	550	S	110	130	110	470	S
Biological, agricultural, or other life scientist	290	S	70	30	40	280	S
Computer and information scientist	70	S	S	S	S	70	S
Mathematical scientist	160	S	80	50	40	130	S
Physical scientist	270	S	60	50	40	250	S
Psychologist	330	S	50	90	80	290	S
Social scientist	220	S	40	50	30	200	S
Engineering occupations	110	S	80	S	S	70	S
SEH-related occupations	330	40	100	80	40	300	S
Non-SEH occupations	320	S	80	90	80	320	S
Private for-profit ${ }^{\text {d }}$	1,630	130	850	220	220	1,420	80
Science occupations	1,260	70	640	160	170	1,170	50
Biological, agricultural, or other life scientist	700	30	400	80	80	620	40
Computer and information scientist	640	S	390	80	80	480	S
Mathematical scientist	340	S	180	S	60	280	S
Physical scientist	660	50	330	80	70	620	S
Psychologist	470	40	50	100	70	450	S
Social scientist	320	S	90	30	50	310	S
Engineering occupations	730	60	510	80	110	630	S
SEH-related occupations	680	60	370	120	100	580	60
Non-SEH occupations	930	100	510	140	110	760	50
Private non-profit	990	70	380	120	110	870	30
Science occupations	690	60	290	100	90	620	S
Biological, agricultural, or other life scientist	450	S	190	50	50	410	S
Computer and information scientist	230	S	90	S	S	190	S
Mathematical scientist	170	S	80	S	S	160	S
Physical scientist	290	S	150	S	30	260	S
Psychologist	350	40	70	50	60	350	S
Social scientist	270	S	70	70	40	250	S
Engineering occupations	300	S	150	S	40	240	S
SEH-related occupations	390	S	140	60	40	350	S

TABLE A-44. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006

Employment sector and occupation	All employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{\text {a }}$
Non-SEH occupations	440	S	100	60	50	430	S
Federal government	1,020	70	320	150	120	940	40
Science occupations	740	70	270	120	100	660	40
Biological, agricultural, or other life scientist	490	60	210	60	50	450	S
Computer and information scientist	140	S	60	S	S	130	S
Mathematical scientist	170	S	110	S	S	160	S
Physical scientist	300	S	140	50	60	280	S
Psychologist	250	S	S	60	50	250	S
Social scientist	260	S	90	50	30	240	S
Engineering occupations	310	S	130	50	40	280	S
SEH-related occupations	320	S	120	60	S	310	S
Non-SEH occupations	400	S	100	50	60	380	S
State and local government	670	80	260	140	90	550	S
Science occupations	490	60	190	90	70	440	S
Biological, agricultural, or other life scientist	270	S	70	S	30	240	S
Computer and information scientist	170	S	100	S	S	130	S
Mathematical scientist	80	S	60	S	S	60	S
Physical scientist	250	S	120	40	50	210	S
Psychologist	300	40	60	70	60	280	S
Social scientist	170	S	40	50	S	160	S
Engineering occupations	230	S	130	S	40	170	S
SEH-related occupations	260	40	100	50	30	230	S
Non-SEH occupations	300	S	80	80	30	260	S
Self-employed ${ }^{\text {e }}$	1,010	90	260	120	160	900	S
Science occupations	740	80	160	80	160	660	S
Biological, agricultural, or other life scientist	240	50	50	S	50	220	S
Computer and information scientist	210	S	50	S	40	190	S
Mathematical scientist	110	S	S	S	S	110	S
Physical scientist	230	S	120	S	S	200	S
Psychologist	600	60	70	60	120	560	S
Social scientist	190	S	S	40	S	180	S
Engineering occupations	330	S	80	S	40	310	S
SEH-related occupations	220	S	70	S	50	200	S
Non-SEH occupations	550	40	160	70	60	510	S
Other sector ${ }^{\text {f }}$	190	S	80	S	40	170	S
Science occupations	150	S	70	S	S	130	S
Biological, agricultural, or other life scientist	50	S	S	S	S	50	S
Computer and information scientist	S	S	S	S	S	S	S
Mathematical scientist	S	S	S	S	S	S	S
Physical scientist	S	S	S	S	S	S	S
Psychologist	S	S	S	S	S	S	S
Social scientist	130	S	70	S	S	120	S
Engineering occupations	S	S	S	S	S	S	S
SEH-related occupations	50	S	S	S	S	50	S
Non-SEH occupations	100	S	50	S	S	90	S
	Percent						
All sectors	-	0.1	0.1	0.1	0.1	0.1	0.1
Science occupations	-	0.1	0.2	0.1	0.1	0.2	0.1
Biological, agricultural, or other life scientist	-	0.1	0.4	0.1	0.2	0.4	0.1
Computer and information scientist	-	0.1	1.1	0.2	0.2	1.1	S
Mathematical scientist	-	S	1.2	0.3	0.4	1.2	S
Physical scientist	-	0.1	0.6	0.2	0.2	0.6	0.1
Psychologist	-	0.1	0.2	0.2	0.2	0.4	0.1
Social scientist	-	0.2	0.4	0.3	0.2	0.5	0.1

TABLE A-44. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006

Employment sector and occupation	All employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{\text {a }}$
Engineering occupations	-	0.1	0.6	0.2	0.2	0.7	S
SEH-related occupations	-	0.1	0.7	0.3	0.2	0.7	0.1
Non-SEH occupations	-	0.1	0.5	0.2	0.2	0.6	0.1
4-year educational institutions ${ }^{\text {b }}$	-	0.1	0.3	0.1	0.1	0.3	0.1
Science occupations	-	0.1	0.3	0.2	0.1	0.4	0.1
Biological, agricultural, or other life scientist	-	0.2	0.7	0.2	0.2	0.7	0.1
Computer and information scientist	-	S	2.1	0.4	0.6	2.1	S
Mathematical scientist	-	S	1.5	0.4	0.6	1.6	S
Physical scientist	-	0.2	0.8	0.3	0.3	0.9	0.1
Psychologist	-	0.3	0.4	0.6	0.5	1.0	0.2
Social scientist	-	0.2	0.5	0.4	0.2	0.7	0.1
Engineering occupations	-	0.2	1.5	0.5	0.4	1.5	S
SEH-related occupations	-	0.1	1.0	0.5	0.4	1.1	S
Non-SEH occupations	-	0.3	0.8	0.5	0.3	1.0	S
Other educational institutions ${ }^{\text {c }}$	-	0.2	0.7	0.8	0.6	1.2	S
Science occupations	-	S	0.8	1.0	0.8	1.4	S
Biological, agricultural, or other life scientist	-	S	2.1	1.0	1.2	2.6	S
Computer and information scientist	-	S	S	S	S	15.0	S
Mathematical scientist	-	S	7.3	4.5	3.2	8.5	S
Physical scientist	-	S	1.9	1.6	1.4	2.8	S
Psychologist	-	S	1.3	2.3	1.9	3.1	S
Social scientist	-	S	2.1	2.7	1.5	3.4	S
Engineering occupations	-	S	18.1	S	S	17.4	S
SEH-related occupations	-	0.9	2.2	1.8	1.0	3.3	S
Non-SEH occupations	-	S	1.6	1.9	1.6	3.0	S
Private for-profit ${ }^{\text {d }}$	-	0.1	0.4	0.1	0.1	0.4	0.1
Science occupations	-	0.1	0.7	0.2	0.2	0.7	0.1
Biological, agricultural, or other life scientist	-	0.1	1.6	0.3	0.3	1.6	0.2
Computer and information scientist	-	S	1.6	0.4	0.4	1.6	S
Mathematical scientist	-	S	3.5	S	1.1	3.5	S
Physical scientist	-	0.2	1.3	0.3	0.3	1.3	S
Psychologist	-	0.4	0.4	0.9	0.6	1.2	S
Social scientist	-	S	2.2	0.7	1.2	2.9	S
Engineering occupations	-	0.1	1.0	0.2	0.2	1.0	S
SEH-related occupations	-	0.3	1.5	0.5	0.4	1.6	0.2
Non-SEH occupations	-	0.2	1.0	0.3	0.3	1.0	0.1
Private non-profit	-	0.2	0.9	0.3	0.3	1.0	0.1
Science occupations	-	0.2	1.2	0.4	0.4	1.4	S
Biological, agricultural, or other life scientist	-	S	2.5	0.6	0.7	2.9	S
Computer and information scientist	-	S	5.2	S	S	5.6	S
Mathematical scientist	-	S	6.7	S	S	6.9	S
Physical scientist	-	S	3.0	S	0.6	3.0	S
Psychologist	-	0.6	1.1	0.8	1.0	1.9	S
Social scientist	-	S	2.2	2.5	1.2	3.4	S
Engineering occupations	-	S	4.2	0.6	1.4	4.6	S
SEH-related occupations	-	S	2.3	0.9	0.6	2.7	S
Non-SEH occupations	-	S	1.1	0.6	0.5	1.3	S
Federal government	-	0.2	0.8	0.4	0.3	0.9	0.1
Science occupations	-	0.3	1.0	0.4	0.4	1.1	0.1
Biological, agricultural, or other life scientist	-	0.5	1.8	0.5	0.4	2.1	S
Computer and information scientist	-	S	7.5	S	S	7.5	S
Mathematical scientist	-	S	7.2	S	S	7.3	S
Physical scientist	-	S	2.1	0.8	0.9	2.4	S
Psychologist	-	S	S	2.1	2.0	2.7	S
Social scientist	-	S	2.1	1.3	0.8	2.8	S

TABLE A-44. Standard errors for employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006

Employment sector and occupation	All employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Engineering occupations	-	S	2.5	1.1	0.7	2.9	S
SEH-related occupations	-	S	2.5	1.2	S	2.6	S
Non-SEH occupations	-	S	1.9	0.9	1.1	2.4	S
State and local government	-	0.4	1.3	0.7	0.5	1.5	S
Science occupations	-	0.5	1.6	0.8	0.6	1.9	S
Biological, agricultural, or other life scientist	-	S	2.7	S	1.2	3.5	S
Computer and information scientist	-	S	8.7	S	S	8.7	S
Mathematical scientist	-	S	18.3	S	S	18.6	S
Physical scientist	-	S	3.9	1.3	1.7	4.1	S
Psychologist	-	0.9	1.6	2.0	1.5	3.3	S
Social scientist	-	S	3.3	3.9	S	5.0	S
Engineering occupations	-	S	5.5	S	1.9	5.3	S
SEH-related occupations	-	1.5	3.6	1.8	1.0	4.3	S
Non-SEH occupations	-	S	2.1	2.2	0.9	2.9	S
Self-employed ${ }^{\text {e }}$	-	0.2	0.6	0.3	0.4	0.8	S
Science occupations	-	0.3	0.6	0.3	0.6	0.9	S
Biological, agricultural, or other life scientist	-	2.3	1.9	S	2.3	4.0	S
Computer and information scientist	-	S	3.5	S	3.0	4.4	S
Mathematical scientist	-	S	S	S	S	6.8	S
Physical scientist	-	S	6.0	S	S	5.6	S
Psychologist	-	0.3	0.4	0.3	0.6	0.9	S
Social scientist	-	S	S	2.4	S	3.7	S
Engineering occupations	-	S	2.3	S	1.0	2.6	S
SEH-related occupations	-	S	2.7	S	1.9	3.6	S
Non-SEH occupations	-	0.3	1.5	0.7	0.6	1.8	S
Other ${ }^{\text {f }}$	-	S	5.0	S	2.2	5.8	S
Science occupations	-	S	5.8	S	S	6.7	S
Biological, agricultural, or other life scientist	-	S	S	S	S	11.0	S
Computer and information scientist	-	S	S	S	S	S	S
Mathematical scientist	-	S	S	S	S	S	S
Physical scientist	-	S	S	S	S	S	S
Psychologist	-	S	S	S	S	S	S
Social scientist	-	S	7.2	S	S	7.9	S
Engineering occupations	-	S	S	S	S	S	S
SEH-related occupations	-	S	S	S	S	13.5	S
Non-SEH occupations	-	S	14.1	S	S	14.4	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100\%.

SEH = science, engineering, and health.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institution includes 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\text {c }}$ Other educational institution includes 2 -year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{d}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
NOTE: Standard errors for numbers are rounded up to nearest 10 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Occupation	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
	Number										
All occupations	1,640	2,190	1,920	1,570	940	1,280	910	2,100	1,350	1,840	1,040
Science occupations	1,890	1,860	1,610	1,480	640	1,010	890	1,760	970	1,560	790
Biological, agricultural, or other life scientist	1,120	1,110	900	960	260	600	310	1,040	420	700	460
Agricultural/food scientist	410	400	390	200	80	250	80	310	120	70	150
Biochemist/biophysicist	580	590	420	490	120	260	130	380	100	90	160
Biological scientist	730	680	480	510	120	210	160	500	190	110	210
Forestry/conservation scientist	180	150	150	80	40	60	70	130	60	S	80
Medical scientist	860	850	700	700	180	380	170	630	270	150	250
Postsecondary teacher, agricultural/other natural sciences	320	260	230	120	S	70	S	150	60	310	60
Postsecondary teacher, biological sciences	710	510	250	470	S	100	70	350	130	650	230
Other biological/agricultural/life scientist	320	320	240	240	80	160	100	210	110	60	90
Computer and information scientist	770	660	470	320	350	430	620	460	160	350	250
Computer/information scientist	750	630	420	200	350	420	610	430	160	90	240
Postsecondary teacher, computer science	360	320	240	230	40	60	150	140	S	340	90
Mathematical scientist	500	530	410	400	180	170	320	360	130	460	190
Mathematical scientist	470	440	390	230	180	170	310	260	120	50	140
Postsecondary teacher, mathematics/statistics	460	430	230	370	S	30	100	240	80	460	140
Physical scientist	1,060	1,040	760	680	370	550	360	730	290	650	350
Chemist, except biochemist	600	580	520	300	200	460	100	450	150	110	240
Earth/atmospheric/ocean scientist	400	410	330	280	170	170	190	250	120	80	120
Physicist/astronomer	570	540	450	360	220	300	260	330	130	110	140
Postsecondary teacher, chemistry	470	360	170	310	40	50	60	300	70	460	160
Postsecondary teacher, physics	390	330	130	330	60	70	60	170	60	380	100
Postsecondary teacher, other physical sciences	350	300	200	240	S	70	70	200	50	340	80
Other physical scientist	240	230	200	100	90	140	80	190	90	60	70
Psychologist	860	750	580	550	120	270	140	720	750	640	290
Psychologist	850	620	550	350	110	250	130	690	770	380	240
Postsecondary teacher, psychology	590	520	310	410	40	70	50	300	220	560	210
Social scientist	830	770	680	610	150	220	190	590	300	720	330
Economist	400	350	330	230	70	110	140	280	180	80	140
Political scientist	210	210	160	160	40	50	S	150	60	60	60
Postsecondary teacher, economics	390	400	310	290	S	S	60	160	S	380	110
Postsecondary teacher, political science	350	300	200	240	S	50	S	210	70	340	110
Postsecondary teacher, sociology	350	300	190	250	S	50	S	180	60	330	110
Postsecondary teacher, other social sciences	410	360	230	300	S	70	50	200	90	410	120
Sociologist/anthropologist	300	280	240	160	60	100	60	240	90	70	70
Other social scientist	380	330	300	180	100	150	90	280	140	90	120

Occupation	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Engineering occupations	1,000	1,000	890	490	680	750	460	710	320	720	480
Aerospace/aeronautical/astronautical engineer	330	310	260	100	200	230	170	210	80	S	100
Chemical engineer	390	360	300	140	190	310	160	240	70	S	150
Civil/architectural/sanitary engineer	310	270	210	110	180	150	130	250	170	S	100
Electrical engineer	560	590	440	200	460	440	270	340	140	S	240
Materials/metallurgical engineer	170	150	90	S	100	110	40	110	50	S	50
Mechanical engineer	410	390	320	140	250	270	180	270	140	60	120
Postsecondary teacher, engineering	660	580	500	290	90	110	90	280	70	620	170
Other engineer	600	560	440	260	340	410	230	410	190	90	220
Science and engineering-related occupations	1,110	800	670	370	240	420	340	960	790	610	310
Health occupation, except postsecondary teacher	720	440	350	260	90	190	90	430	620	300	190
Postsecondary teacher, health and related sciences	600	490	390	270	S	120	40	320	250	570	150
SEH manager	740	550	470	190	200	300	140	720	240	70	170
SEH precollege teacher	310	80	40	50	S	50	S	150	50	310	120
SEH technician/technologist	290	200	110	80	130	140	270	150	50	40	70
Other SEH-related occupation	90	70	60	S	60	S	50	70	S	S	S
Non-science and engineering occupations	1,350	820	570	410	290	530	260	1,300	730	610	460
Arts/humanities-related occupation	390	260	150	130	80	150	90	210	280	110	140
Management-related occupation	770	470	340	150	200	280	180	650	350	170	240
Non-SEH manager	1,020	580	400	220	210	400	190	980	290	130	300
Non-SEH postsecondary teacher	480	440	300	270	S	90	S	250	140	460	160
Non-SEH precollege/other teacher	260	100	60	60	S	50	S	150	100	240	70
Sales/marketing occupation	450	200	170	40	80	160	80	430	180	60	120
Social service-related occupation	320	110	80	50	40	70	S	230	240	170	120
Other non-SEH occupation	520	210	170	100	100	120	90	390	310	120	230
Percent											
All occupations	-	0.3	0.3	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.2
Science occupations	-	0.4	0.4	0.4	0.2	0.3	0.2	0.4	0.3	0.4	0.2
Biological, agricultural, or other life scientist	-	0.6	0.7	0.7	0.2	0.5	0.3	2.0	0.4	0.6	0.4
Agricultural/food scientist	-	2.1	2.7	1.9	0.8	2.5	0.8	2.6	1.3	0.7	1.6
Biochemist/biophysicist	-	1.1	1.9	2.0	0.8	1.5	0.8	2.2	0.7	0.6	1.1
Biological scientist	-	1.0	1.6	1.4	0.5	0.9	0.7	1.8	0.8	0.5	0.9
Forestry/conservation scientist	-	4.3	5.2	4.2	2.3	3.5	3.6	5.6	3.3	S	4.1
Medical scientist	-	0.9	1.4	1.3	0.5	1.0	0.5	1.3	0.7	0.4	0.7
Postsecondary teacher, agricultural/other natural sciences	-	3.2	3.4	2.3	S	1.4	S	2.9	1.2	2.3	1.3
Postsecondary teacher, biological sciences	-	1.6	0.9	1.7	S	0.4	0.3	1.3	0.5	0.7	0.8
Other biological/agricultura/llife scientist	-	1.7	3.7	3.6	1.4	3.0	1.9	3.2	2.2	1.1	1.7
Computer and information scientist	-	1.2	1.2	0.9	0.9	1.2	1.3	1.2	0.5	1.0	0.7
Computer/information scientist	-	1.3	1.3	0.7	1.1	1.4	1.4	1.4	0.6	0.3	0.9

Occupation	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Postsecondary teacher, computer science	-	2.8	2.7	2.9	0.6	0.7	1.9	1.7	S	1.4	1.2
Mathematical scientist	-	1.5	1.4	1.5	0.7	0.7	1.2	1.4	0.5	1.7	0.8
Mathematical scientist	-	1.9	2.3	1.9	1.6	1.7	2.6	2.1	1.1	0.5	1.3
Postsecondary teacher, mathematics/statistics	-	2.1	1.4	2.1	S	0.2	0.6	1.5	0.5	1.0	0.9
Physical scientist	-	0.8	0.8	0.8	0.5	0.7	0.5	0.8	0.4	0.7	0.5
Chemist, except biochemist	-	1.2	1.8	1.3	0.8	1.7	0.4	1.5	0.6	0.5	1.0
Earth/atmospheric/ocean scientist	-	1.3	2.3	2.2	1.6	1.6	1.7	2.3	1.1	0.8	1.2
Physicist/astronomer	-	1.3	2.3	2.0	1.6	2.0	1.9	2.1	0.9	0.8	1.0
Postsecondary teacher, chemistry	-	2.5	1.3	2.3	0.3	0.4	0.4	2.3	0.5	1.0	1.3
Postsecondary teacher, physics	-	2.5	1.5	3.0	0.7	0.8	0.6	1.7	0.6	1.3	1.1
Postsecondary teacher, other physical sciences	-	2.8	2.6	2.9	S	1.0	1.0	2.8	0.7	1.8	1.1
Other physical scientist	-	4.3	4.7	3.0	3.1	5.1	2.7	5.5	3.1	2.0	2.4
Psychologist	-	0.9	0.8	0.8	0.2	0.4	0.2	0.9	0.8	0.9	0.4
Psychologist	-	1.0	1.0	0.7	0.2	0.5	0.2	1.1	0.9	0.7	0.5
Postsecondary teacher, psychology	-	2.0	1.6	1.9	0.2	0.4	0.3	1.6	1.2	0.6	1.1
Social scientist	-	0.9	1.0	1.1	0.3	0.4	0.3	1.0	0.5	1.0	0.6
Economist	-	2.0	2.3	2.6	0.9	1.4	1.7	2.8	2.2	1.0	1.7
Political scientist	-	4.2	6.1	6.7	2.4	2.8	S	5.9	3.3	3.0	3.6
Postsecondary teacher, economics	-	2.8	3.0	2.8	S	S	0.6	1.7	S	1.6	1.2
Postsecondary teacher, political science	-	2.8	2.2	2.6	S	0.5	S	2.3	0.8	0.8	1.2
Postsecondary teacher, sociology	-	2.5	2.2	2.8	S	0.6	S	2.2	0.7	1.0	1.3
Postsecondary teacher, other social sciences	-	2.1	2.1	2.3	S	0.7	0.4	1.9	0.8	1.3	1.2
Sociologist/anthropologist	-	2.8	3.6	2.9	1.4	2.1	1.3	3.7	2.0	1.5	1.5
Other social scientist	-	2.3	2.6	2.4	1.4	2.0	1.3	3.1	1.8	1.2	1.6
Engineering occupations	-	0.7	0.9	0.6	0.8	0.9	0.6	0.8	0.4	0.7	0.6
Aerospace/aeronautical/astronautical engineer	-	2.4	3.9	1.7	3.6	3.5	2.9	3.2	1.4	S	1.8
Chemical engineer	-	2.0	3.0	1.8	2.4	3.3	2.1	2.8	0.9	S	2.0
Civil/architectural/sanitary engineer	-	3.8	4.0	2.3	3.5	3.2	2.5	4.4	3.3	S	2.2
Electrical engineer	-	1.3	2.0	1.0	2.2	2.0	1.4	1.7	0.7	S	1.3
Materials/metallurgical engineer	-	6.6	7.3	S	9.3	8.4	4.0	8.2	5.0	S	4.4
Mechanical engineer	-	1.6	2.9	1.5	2.6	2.8	2.1	2.9	1.5	0.6	1.3
Postsecondary teacher, engineering	-	1.9	2.1	1.5	0.5	0.6	0.5	1.5	0.4	0.8	0.9
Other engineer	-	1.2	1.8	1.3	1.7	1.8	1.1	1.7	0.9	0.5	1.1
Science and engineering-related occupations	-	1.0	0.9	0.5	0.4	0.6	0.5	1.1	1.1	0.8	0.5
Health occupation, except postsecondary teacher	-	1.7	1.5	1.2	0.4	0.9	0.4	1.8	1.4	1.4	1.0
Postsecondary teacher, health and related sciences	-	2.1	1.8	1.4	S	0.7	0.2	1.8	1.4	0.7	0.8
SEH manager	-	1.6	1.6	0.8	0.8	1.3	0.6	0.8	1.0	0.3	0.7
SEH precollege teacher	-	2.1	1.1	1.2	S	1.3	S	3.5	1.2	1.1	3.1
SEH technician/technologist	-	5.6	3.8	2.4	4.2	4.4	4.4	4.2	1.5	1.4	2.3

TABLE A-45. Standard errors for employed doctoral scientists and engineers, by occupation and primary or secondary work activity: 2006

Occupation	All employed	Research and development					Computer applications	Management, sales, administration	Professional services	Teaching	Other
		Any R\&D	Applied research	Basic research	Design	Development					
Other SEH-related occupation	-	13.3	13.9	S	13.9	S	12.9	13.4	S	S	S
Non-science and engineering occupations	-	0.7	0.5	0.4	0.3	0.5	0.2	0.7	0.6	0.5	0.4
Arts/humanities-related occupation	-	3.6	2.4	2.2	1.4	2.4	1.6	2.8	3.5	2.0	2.4
Management-related occupation	-	1.5	1.3	0.7	0.9	1.0	0.7	1.4	1.4	0.7	1.0
Non-SEH manager	-	1.2	0.9	0.5	0.5	0.9	0.4	0.6	0.7	0.3	0.7
Non-SEH postsecondary teacher	-	2.6	2.1	1.9	S	0.7	S	1.9	1.1	0.9	1.3
Non-SEH precollege/other teacher	-	3.3	2.0	2.0	S	1.8	S	4.3	3.3	3.1	2.6
Sales/marketing occupation	-	2.1	1.9	0.5	0.9	1.9	1.0	1.6	2.1	0.7	1.4
Social service-related occupation	-	2.6	1.8	1.2	1.0	1.7	S	3.8	3.7	3.4	2.7
Other non-SEH occupation	-	2.1	1.9	1.0	1.0	1.2	0.9	2.2	2.6	1.3	2.2

S = suppressed for reliability or confidentiality.

- = no value; standard errors are not calculated for proportions of 100%.

SEH = science, engineering, and health.
 rounded up to nearest 10

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Employer location	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
	Number										
All locations	1,640	1,890	1,120	770	500	1,060	860	830	1,000	1,110	1,350
New England	1,050	890	520	250	200	350	400	340	390	370	470
Connecticut	490	430	260	100	80	200	200	150	170	180	200
Maine	270	210	110	50	S	70	100	110	80	80	110
Massachusetts	840	720	430	240	160	270	340	280	290	300	380
New Hampshire	260	180	90	70	40	80	80	80	110	60	110
Rhode Island	280	220	100	60	80	90	110	100	110	90	120
Vermont	210	160	70	50	S	70	90	100	80	60	70
Middle Atlantic	1,480	1,070	630	400	290	490	550	440	490	450	680
New Jersey	730	540	280	230	150	300	220	180	250	270	310
New York	1,070	820	410	290	220	370	410	350	320	310	480
Pennsylvania	910	630	380	190	170	300	290	260	280	310	370
East North Central	1,260	1,090	570	280	290	450	510	440	470	430	530
Illinois	810	630	330	190	170	250	290	240	270	250	320
Indiana	490	420	220	110	120	180	160	180	210	150	200
Michigan	630	510	300	140	150	240	280	190	320	200	230
Ohio	650	460	300	140	130	250	280	240	260	230	280
Wisconsin	540	400	210	100	100	160	190	150	190	150	200
West North Central	1,020	740	480	140	180	320	300	270	350	360	370
lowa	350	290	150	60	100	130	130	120	120	140	130
Kansas	350	280	150	70	60	80	140	110	130	90	130
Minnesota	600	380	240	100	80	190	190	170	210	250	240
Missouri	460	350	230	60	110	170	160	120	160	180	230
Nebraska	200	170	110	S	40	60	90	60	60	70	60
North Dakota	280	240	160	S	40	110	120	100	70	80	100
South Dakota	160	130	80	50	40	40	80	60	S	70	70
South Atlantic	1,560	1,370	770	390	350	540	510	600	530	530	700
Delaware	280	220	110	100	50	130	90	60	110	70	120
District of Columbia	540	430	160	90	100	160	150	350	170	160	280
Florida	670	490	270	170	140	190	240	200	260	230	280
Georgia	560	470	250	130	100	200	200	190	160	170	260
Maryland	970	740	390	190	190	290	240	200	290	260	370
North Carolina	680	570	340	160	130	250	230	200	170	240	270
South Carolina	390	320	190	60	90	150	150	100	140	110	180
Virginia	700	580	210	230	200	280	240	210	240	160	360
West Virginia	240	200	110	S	70	100	80	80	100	80	60

East South Central	770	620	360	170	140	290	260	240	300	300	330
Alabama	400	310	160	80	80	160	130	110	160	140	140
Kentucky	320	260	150	70	90	120	120	120	100	120	160
Mississippi	260	190	140	60	50	100	70	70	100	100	140
Tennessee	470	380	200	100	90	190	200	140	200	180	200
West South Central	1,160	780	440	270	200	370	360	280	430	350	450
Arkansas	270	220	150	50	60	100	90	90	80	110	100
Louisiana	390	290	170	80	60	110	130	110	110	160	130
Oklahoma	310	280	140	80	60	150	140	110	110	90	120
Texas	980	690	360	230	150	340	300	250	390	310	410
Mountain	930	750	390	220	220	400	300	300	410	320	440
Arizona	410	320	190	80	100	170	150	140	190	140	170
Colorado	580	440	230	120	120	250	200	170	210	160	260
Idaho	290	190	110	50	60	80	90	70	120	90	130
Montana	220	190	130	S	70	80	80	60	60	70	70
New Mexico	450	330	170	110	90	220	110	90	220	130	180
Nevada	250	220	90	40	70	120	90	80	110	90	110
Utah	380	290	170	90	110	120	130	140	150	110	190
Wyoming	130	120	70	S	40	50	60	60	40	S	50
Pacific	1,520	1,050	710	450	300	490	490	450	700	560	700
Alaska	150	130	90	40	30	70	20	70	50	40	70
California	1,300	930	620	400	250	450	460	360	630	490	640
Hawaii	270	240	120	70	50	120	90	90	50	60	110
Oregon	450	300	200	130	80	110	150	130	210	160	150
Washington	580	500	290	180	120	200	220	210	220	210	240
Puerto Rico	160	130	80	S	40	70	80	40	30	40	80
Other U.S. territories and other areas	200	140	60	S	50	60	90	90	100	40	120
	Percent										
All locations	-	-	-	-	-	-	-	-	-	-	-
New England	0.2	0.2	0.4	0.7	0.8	0.5	0.6	0.6	0.5	0.5	0.4
Connecticut	0.1	0.1	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.2
Maine	S	0.1	0.1	0.1	S	0.1	0.1	0.2	0.1	0.1	0.1
Massachusetts	0.1	0.2	0.4	0.7	0.6	0.4	0.5	0.5	0.4	0.4	0.4
New Hampshire	S	S	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1

Employer location	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
Rhode Island	S	0.1	0.1	0.2	0.3	0.1	0.2	0.2	0.1	0.1	0.1
Vermont	S	S	0.1	0.1	S	0.1	0.1	0.2	0.1	0.1	0.1
Middle Atlantic	0.2	0.3	0.5	1.2	1.1	0.6	0.8	0.8	0.6	0.6	0.6
New Jersey	0.1	0.1	0.2	0.7	0.6	0.4	0.3	0.3	0.3	0.4	0.3
New York	0.2	0.2	0.3	0.9	0.9	0.5	0.6	0.6	0.4	0.4	0.4
Pennsylvania	0.1	0.2	0.3	0.6	0.7	0.4	0.4	0.5	0.3	0.5	0.3
East North Central	0.2	0.3	0.5	0.8	1.2	0.6	0.7	0.8	0.5	0.6	0.5
Illinois	0.1	0.2	0.3	0.5	0.7	0.3	0.4	0.4	0.3	0.4	0.3
Indiana	0.1	0.1	0.2	0.3	0.5	0.2	0.2	0.3	0.3	0.2	0.2
Michigan	0.1	0.1	0.3	0.4	0.6	0.3	0.4	0.3	0.4	0.3	0.2
Ohio	0.1	0.1	0.3	0.4	0.5	0.3	0.4	0.4	0.3	0.3	0.3
Wisconsin	0.1	0.1	0.2	0.3	0.4	0.2	0.3	0.3	0.2	0.2	0.2
West North Central	0.2	0.2	0.4	0.4	0.7	0.4	0.4	0.5	0.4	0.5	0.4
lowa	0.1	0.1	0.1	0.2	0.4	0.2	0.2	0.2	0.1	0.2	0.1
Kansas	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.2	0.2	0.1	0.1
Minnesota	0.1	0.1	0.2	0.3	0.3	0.2	0.3	0.3	0.3	0.4	0.2
Missouri	0.1	0.1	0.2	0.2	0.4	0.2	0.2	0.2	0.2	0.3	0.2
Nebraska	S	S	0.1	S	0.2	0.1	0.1	0.1	0.1	0.1	0.1
North Dakota	S	0.1	0.1	S	0.1	0.1	0.2	0.2	0.1	0.1	0.1
South Dakota	S	S	0.1	0.1	0.2	S	0.1	0.1	S	0.1	0.1
South Atlantic	0.2	0.3	0.6	1.0	1.3	0.6	0.7	1.0	0.6	0.8	0.6
Delaware	S	0.1	0.1	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1
District of Columbia	0.1	0.1	0.1	0.2	0.4	0.2	0.2	0.6	0.2	0.2	0.3
Florida	0.1	0.1	0.2	0.5	0.5	0.2	0.3	0.4	0.3	0.3	0.3
Georgia	0.1	0.1	0.2	0.4	0.4	0.3	0.3	0.3	0.2	0.2	0.2
Maryland	0.2	0.2	0.3	0.5	0.7	0.4	0.3	0.4	0.4	0.4	0.3
North Carolina	0.1	0.2	0.3	0.5	0.5	0.3	0.3	0.4	0.2	0.4	0.3
South Carolina	0.1	0.1	0.2	0.2	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Virginia	0.1	0.2	0.2	0.6	0.8	0.4	0.3	0.4	0.3	0.2	0.3
West Virginia	S	0.1	0.1	S	0.3	0.1	0.1	0.1	0.1	0.1	0.1
East South Central	0.1	0.2	0.3	0.5	0.6	0.4	0.4	0.4	0.4	0.4	0.3
Alabama	0.1	0.1	0.1	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.1
Kentucky	0.1	0.1	0.1	0.2	0.3	0.2	0.2	0.2	0.1	0.2	0.2
Mississippi	S	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Tennessee	0.1	0.1	0.2	0.3	0.4	0.2	0.3	0.3	0.2	0.3	0.2
West South Central	0.2	0.2	0.4	0.8	0.8	0.5	0.5	0.5	0.5	0.5	0.4

Employer location	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
Arkansas	S	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1
Louisiana	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.2	0.1	0.2	0.1
Oklahoma	S	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1
Texas	0.2	0.2	0.3	0.7	0.6	0.4	0.4	0.4	0.5	0.5	0.4
Mountain	0.2	0.2	0.3	0.6	0.9	0.5	0.4	0.5	0.5	0.5	0.4
Arizona	0.1	0.1	0.2	0.2	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Colorado	0.1	0.1	0.2	0.3	0.5	0.3	0.3	0.3	0.3	0.2	0.2
Idaho	S	S	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Montana	S	0.1	0.1	S	0.3	0.1	0.1	0.1	0.1	0.1	0.1
New Mexico	0.1	0.1	0.1	0.3	0.3	0.3	0.2	0.2	0.3	0.2	0.2
Nevada	S	0.1	0.1	0.1	0.3	0.2	0.1	0.1	0.1	0.1	0.1
Utah	0.1	0.1	0.1	0.2	0.4	0.1	0.2	0.2	0.2	0.2	0.2
Wyoming	S	S	0.1	S	0.2	0.1	0.1	0.1	S	S	S
Pacific	0.2	0.3	0.6	1.2	1.2	0.7	0.7	0.8	0.8	0.8	0.6
Alaska	S	S	0.1	0.1	S	0.1	S	0.1	0.1	0.1	0.1
California	0.2	0.2	0.5	1.1	1.0	0.6	0.6	0.7	0.8	0.7	0.6
Hawaii	S	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.1
Oregon	0.1	0.1	0.2	0.4	0.3	0.1	0.2	0.2	0.3	0.2	0.1
Washington	0.1	0.1	0.2	0.5	0.5	0.3	0.3	0.4	0.3	0.3	0.2
Puerto Rico	S	S	0.1	S	0.1	0.1	0.1	0.1	S	S	0.1
Other U.S. territories and other areas	S	S	0.1	S	0.2	0.1	0.1	0.2	0.1	S	0.1

- = no value; standard errors are not calculated for proportions of 100%.

NOTES: Because survey sample design does not include geography, reliability of estimates in some states may be poor due to small sample size. Standard errors for numbers are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-47. Standard errors for employed doctoral scientists and engineers, by selected demographic characteristics and broad occupation: 2006

Characteristic	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
Number employed	1,640	1,890	950	730	480	980	550	690	960	850	1,210
All characteristics	-	-	-	-	-	-	-	-	-	-	-
Sex											
Male	0.1	0.2	0.5	0.9	1.0	0.5	0.6	0.7	0.4	0.7	0.6
Female	0.1	0.2	0.5	0.9	1.0	0.5	0.6	0.7	0.4	0.7	0.6
Race/ethnicity											
American Indian/Alaska Native	0.1	0.1	0.1	0.1	S	0.1	0.1	0.2	0.1	0.1	0.1
Asian	0.1	0.2	0.4	1.1	1.2	0.6	0.2	0.4	0.6	0.7	0.5
Black	0.1	0.1	0.1	0.2	0.3	0.2	0.2	0.3	0.2	0.3	0.2
Hispanic	0.1	0.1	0.2	0.2	0.4	0.2	0.2	0.2	0.2	0.2	0.2
White	0.1	0.2	0.4	1.1	1.2	0.6	0.4	0.5	0.7	0.7	0.6
Other race/ethnicity ${ }^{\text {a }}$	0.1	0.1	0.1	S	S	0.1	0.1	0.1	S	0.1	0.1
Age											
Under 35	0.2	0.2	0.5	0.7	0.8	0.6	0.5	0.5	0.6	0.4	0.3
35-39	0.2	0.3	0.6	1.0	1.0	0.6	0.6	0.8	0.6	0.6	0.5
40-44	0.2	0.3	0.5	1.1	0.9	0.7	0.6	0.7	0.6	0.7	0.4
45-49	0.2	0.3	0.5	1.1	1.1	0.6	0.6	0.7	0.6	0.7	0.5
50-54	0.2	0.3	0.5	1.0	1.0	0.6	0.7	0.7	0.5	0.7	0.5
55-59	0.2	0.2	0.4	0.9	0.8	0.6	0.7	0.7	0.5	0.7	0.6
60-64	0.2	0.2	0.4	0.7	0.9	0.5	0.6	0.7	0.6	0.6	0.5
65-75	0.2	0.2	0.3	0.6	0.9	0.5	0.5	0.6	0.5	0.5	0.4
Citizenship status											
U.S. citizen	0.1	0.2	0.5	1.1	1.0	0.6	0.3	0.5	0.6	0.4	0.3
Native born	0.1	0.2	0.5	1.1	1.2	0.7	0.4	0.6	0.6	0.7	0.5
Naturalized	0.2	0.2	0.5	1.2	1.1	0.5	0.3	0.5	0.6	0.6	0.5
Non-U.S. citizen	0.1	0.2	0.5	1.1	1.0	0.6	0.3	0.5	0.6	0.4	0.3
Permanent resident	0.1	0.2	0.4	1.0	0.9	0.5	0.2	0.5	0.5	0.3	0.3
Temporary resident	0.1	0.1	0.3	0.6	0.6	0.4	0.1	0.3	0.4	0.3	0.2
Years since doctorate											
5 or less	0.1	0.2	0.5	0.8	1.0	0.6	0.4	0.7	0.6	0.6	0.5
6-10	0.1	0.2	0.4	1.0	0.9	0.5	0.5	0.5	0.6	0.7	0.5
11-15	0.1	0.2	0.5	1.0	1.0	0.6	0.5	0.6	0.5	0.7	0.5
16-20	0.1	0.2	0.4	0.7	1.0	0.5	0.5	0.5	0.4	0.6	0.5
21-25	0.1	0.2	0.4	0.7	0.7	0.5	0.5	0.5	0.4	0.6	0.5
More than 25	0.2	0.3	0.5	1.1	1.2	0.7	0.6	0.8	0.6	0.8	0.7

TABLE A-47. Standard errors for employed doctoral scientists and engineers, by selected demographic characteristics and broad occupation: 2006
(Percent distribution)

Characteristic	All employed	Science occupations							Engineering occupations	Science and engineeringrelated occupations	Non-science and engineering occupations
		All science occupations	Biological, agricultural, and other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
Place of birth ${ }^{\text {b }}$											
United States	0.2	0.2	0.5	1.1	1.2	0.7	0.4	0.6	0.6	0.7	0.6
Europe	0.1	0.1	0.2	0.6	0.7	0.3	0.3	0.3	0.4	0.3	0.3
Asia	0.1	0.2	0.4	1.2	1.2	0.5	0.2	0.5	0.7	0.7	0.5
North America	0.1	0.1	0.1	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.1
Central America	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1
Caribbean	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1
South America	0.1	0.1	0.1	0.3	0.4	0.1	0.1	0.2	0.1	0.2	0.1
Africa	0.1	0.1	0.2	0.3	0.4	0.1	0.1	0.2	0.2	0.2	0.2
Oceania	0.1	0.1	0.1	0.3	0.3	0.1	0.1	0.2	0.2	0.1	0.1

$\mathrm{S}=$ suppressed for reliability or confidentiality.
-= no value; standard errors are not calculated for proportions of 100%.
${ }^{a}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\text {b }}$ Percentages are based on persons who reported place of birth. Persons who did not specify place of birth are included in total but not shown separately.
NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-48. Standard errors for employed doctoral scientists and engineers, by field of doctorate and broad occupation: 2006
(Percent distribution)

Field	Number employed	Science occupations ${ }^{\text {a }}$			Engineering occupations			Science and engineering-related occupations				Non-science and engineering occupations			
		Total	Postsecondary teacher	Other	Total	Postsecondary teacher	Other	Total	Health occupation	SEH manager	Other	Total	Non-SEH manager	Non-SEH teacher	Other
All fields	1,640	0.2	0.3	0.3	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.1	0.2
Science	1,570	0.3	0.3	0.3	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.2	0.1	0.2
Biological, agricultural, and environmental life sciences	780	0.5	0.5	0.5	0.1	0.1	0.1	0.5	0.4	0.3	0.1	0.4	0.3	0.1	0.3
Agricultural/food sciences	350	1.6	1.6	1.8	0.5	0.2	0.4	1.1	0.6	0.8	0.3	1.3	0.9	0.2	1.1
Biochemistry/biophysics	430	1.5	1.3	1.5	0.3	0.2	0.3	1.2	1.0	0.7	0.4	1.2	0.8	0.3	0.9
Cell/molecular biology	370	1.6	1.4	1.9	0.2	S	0.2	1.5	1.3	0.7	0.3	1.2	0.8	0.3	1.0
Environmental life sciences	230	3.0	2.5	3.2	1.4	0.8	1.2	1.7	0.3	1.6	0.4	2.3	1.7	1.1	1.4
Microbiology	340	2.6	1.9	2.3	0.4	S	0.4	1.8	1.6	1.1	0.3	1.8	1.3	0.2	1.4
Zoology	280	2.3	2.5	2.4	0.4	0.1	0.4	1.5	1.0	0.9	0.8	2.0	1.2	0.6	1.4
Other biological sciences	730	0.8	0.6	0.9	0.2	0.1	0.1	0.7	0.6	0.3	0.2	0.6	0.4	0.2	0.5
Computer and information sciences	270	1.6	1.7	2.1	0.8	0.4	0.7	1.1	0.4	0.9	0.5	1.3	0.9	0.5	0.7
Mathematics and statistics	400	1.2	1.6	1.4	0.6	0.3	0.5	0.6	0.2	0.3	0.4	1.1	0.6	0.6	0.7
Physical sciences	760	0.6	0.5	0.7	0.3	0.1	0.3	0.4	0.2	0.4	0.2	0.5	0.3	0.1	0.4
Astronomy/astrophysics	170	2.6	3.4	4.1	1.7	S	1.7	1.2	0.7	1.1	0.6	1.6	0.5	0.5	1.4
Chemistry, except biochemistry	600	0.8	0.8	1.0	0.4	0.1	0.4	0.6	0.3	0.5	0.2	0.8	0.5	0.2	0.6
Earth/atmospheric/ocean sciences	270	1.4	1.5	1.6	0.6	0.2	0.6	0.9	0.2	0.6	0.4	1.2	0.9	0.3	0.8
Physics	460	1.3	1.0	1.4	0.8	0.3	0.8	0.8	0.2	0.6	0.5	0.9	0.5	0.2	0.8
Psychology	600	0.7	0.6	0.8	0.1	0.1	0.1	0.4	0.2	0.2	0.1	0.6	0.4	0.3	0.4
Social sciences	630	0.9	0.9	0.8	0.2	0.1	0.1	0.3	0.2	0.1	0.2	0.9	0.6	0.5	0.6
Economics	370	1.6	1.7	1.8	0.2	0.1	0.2	0.5	0.3	0.2	0.2	1.5	1.1	0.8	1.0
Political sciences	360	1.7	1.8	1.3	0.2	S	0.2	0.6	0.5	0.2	0.3	1.6	1.4	0.8	1.3
Sociology	290	1.7	2.0	1.6	0.2	S	0.2	0.9	0.8	0.4	0.2	1.6	1.2	1.0	1.2
Other social sciences	480	1.5	1.4	1.3	0.4	0.2	0.3	0.7	0.5	0.3	0.3	1.5	0.8	1.1	1.2
Engineering	740	0.6	0.2	0.5	0.7	0.6	0.7	0.4	0.1	0.3	0.2	0.5	0.4	0.1	0.4
Aerospace/aeronautical/astronautical engineering	230	2.4	0.8	2.2	4.0	2.7	3.8	2.0	0.8	1.8	S	2.5	1.8	0.4	1.7
Chemical engineering	370	1.4	0.5	1.3	2.0	1.2	2.2	1.3	0.5	1.0	0.7	1.6	1.0	0.4	1.2
Civil engineering	310	1.5	0.6	1.4	2.4	2.2	2.5	1.4	S	1.3	0.3	1.4	1.2	0.3	0.8
Electrical/computer engineering	370	1.1	0.5	1.1	1.3	1.1	1.4	0.7	0.2	0.5	0.3	1.0	0.9	0.2	0.6
Materials/metallurgical engineering	340	1.6	0.6	1.5	2.3	1.1	2.4	1.4	0.3	1.2	0.6	1.6	1.3	0.2	1.1

TABLE A-48. Standard errors for employed doctoral scientists and engineers, by field of doctorate and broad occupation: 2006
(Percent distribution)

Field	Number employed	Science occupations ${ }^{\text {a }}$			Engineering occupations			Science and engineering-related occupations				Non-science and engineering occupations			
		Total	Post- secondary teacher	Other	Total	$\begin{array}{r} \text { Post- } \\ \text { secondary } \\ \text { teacher } \end{array}$	Other	Total	Health occupation	$\begin{array}{r} \text { SEH } \\ \text { manager } \end{array}$	Other	Total	Non-SEH manager	Non-SEH teacher	Other
Mechanical engineering	330	1.3	0.4	1.3	2.0	1.5	2.0	1.0	0.3	0.9	0.4	1.1	1.0	0.2	0.8
Other engineering	480	1.4	0.7	1.2	1.7	1.1	1.6	0.8	0.4	0.7	0.2	1.5	1.0	0.5	0.9
Health	360	1.1	0.4	1.1	0.3	0.1	0.2	1.2	1.2	0.7	0.1	1.0	0.8	0.5	0.6

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{a}$ Further detail for science occupations can be found in table A-49.
NOTE: Standard errors for numbers are rounded up to nearest 10 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-49. Standard errors for employed doctoral scientists and engineers working in science occupations, by field of doctorate: 2006
(Percent distribution)

Field	Number employed	Biological, agricultural, and other life scientist			Computer and information scientist			Mathematical scientist			Physical scientist			Psychologist			Social scientist		
		Total	Postsecondary teacher	Other															
All fields	1,890	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Science	1,800	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.1	0.2	0.2	0.1	0.1
Biological, agricultural, and environmental life sciences	970	0.5	0.4	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1	S	0.1	0.1	0.1
Agricultural/food sciences	380	1.7	1.5	1.8	0.5	S	0.5	0.2	S	0.2	0.7	0.4	0.5	S	S	S	0.1	S	0.3
Biochemistry/biophysics	430	1.6	1.2	1.6	0.4	S	0.4	0.2	S	0.2	0.8	0.6	0.5	S	S	S	0.3	S	0.2
Cell/molecular biology	360	1.7	1.4	2.0	0.4	S	0.4	S	S	S	0.3	0.3	0.2	S	S	S	S	S	S
Environmental life sciences	260	3.2	2.2	2.9	0.7	S	0.6	0.7	S	S	2.3	1.5	1.7	S	S	S	S	0.8	1.2
Microbiology	390	2.6	1.9	2.3	0.5	S	0.4	S	S	S	0.5	0.4	S	S	S	S	S	S	S
Zoology	300	2.4	2.3	2.4	0.5	S	0.5	0.4	S	S	0.9	0.8	S	S	S	S	S	S	S
Other biological sciences	730	0.8	0.6	0.9	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.1	0.1	S	0.4	S	0.1
Computer and information sciences	300	0.3	S	0.3	1.7	1.7	2.1	0.4	S	0.4	S	S	S	S	S	S	0.1	S	S
Mathematics and statistics	460	0.3	S	0.3	0.9	0.5	0.8	1.2	1.4	1.1	0.3	0.1	0.3	S	S	S	S	0.2	0.2
Physical sciences	840	0.4	0.1	0.3	0.3	0.1	0.3	0.1	0.1	0.1	0.6	0.5	0.6	0.1	S	S	0.1	S	0.1
Astronomy/astrophysics	200	S	S	S	2.1	S	2.1	S	S	S	2.7	3.4	3.9	S	S	S	S	S	S
Chemistry, except biochemistry	620	0.7	0.2	0.6	0.3	S	0.3	0.1	0.1	0.1	0.9	0.8	0.9	S	S	S	S	S	0.1
Earth/atmospheric/ocean sciences	340	0.8	0.5	0.6	0.5	S	0.5	0.4	0.3	0.2	1.7	1.4	1.6	S	S	S	0.1	S	S
Physics	500	0.6	0.2	0.5	0.8	0.2	0.8	0.4	0.2	0.3	1.2	0.9	1.3	0.1	S	S	0.2	S	0.2
Psychology	750	0.3	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.1	S	S	S	0.7	0.6	0.8	0.2	0.2	0.3
Social sciences	800	0.2	0.1	0.2	0.3	0.1	0.3	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.9	0.9	0.8
Economics	410	0.2	S	0.2	0.4	0.2	0.3	0.5	0.3	0.4	S	S	S	S	S	S	0.3	1.7	1.7
Political sciences	380	S	S	S	0.5	S	0.5	S	S	S	0.2	0.2	S	0.3	S	S	1.7	1.8	1.2
Sociology	320	0.3	S	0.3	0.5	S	0.5	0.4	S	0.4	S	S	S	S	S	S	1.7	2.0	1.5
Other social sciences	440	0.5	0.2	0.5	0.6	0.2	0.5	0.2	S	0.2	0.5	0.4	0.3	0.3	0.2	0.2	1.8	1.3	1.1
Engineering	590	0.2	0.1	0.2	0.4	0.2	0.4	0.2	0.1	0.2	0.3	0.1	0.3	S	S	S	0.1	0.1	0.1
Aerospace/aeronautical/ astronautical engineering	120	S	S	S	1.5	S	1.5	1.0	S	0.8	1.2	S	1.2	S	S	S	S	S	S
Chemical engineering	210	0.8	S	0.8	0.7	S	0.7	0.5	S	0.5	0.9	0.5	0.8	S	S	S	S	S	S
Civil engineering	150	S	S	S	1.0	S	1.0	0.6	S	0.5	1.0	0.4	0.9	S	S	S	S	S	S
Electrical/computer engineering	360	0.2	S	0.2	1.1	0.5	1.0	0.3	0.2	0.2	0.4	0.2	0.4	S	S	S	S	S	S
Materials/metallurgical engineering	180	0.6	S	0.6	0.8	S	0.8	S	S	S	1.3	0.5	1.2	S	S	S	S	S	S

TABLE A-49. Standard errors for employed doctoral scientists and engineers working in science occupations, by field of doctorate: 2006

(Percent distribution)

Field	Number employed	Biological, agricultural, and other life scientist			Computer and information scientist			Mathematical scientist			Physical scientist			Psychologist			Social scientist		
		Total	$\begin{array}{r} \text { Post- } \\ \text { and } \end{array}$ secondary teacher	Other	Total	$\begin{array}{r} \text { Post- } \end{array}$ secondary teacher	Other	Total	Postsecondary teacher	Other	Total	Post- secondary teacher	Other	Total	Post- secondary teacher	Other	Total	Post- secondary secondary teacher	Other
Mechanical engineering	210	0.4	S	0.4	1.1	0.3	1.0	0.3	S	0.3	0.5	S	0.5	S	S	S	S	s	S
Other engineering	310	0.9	0.3	0.8	0.8	0.4	0.7	0.7	0.3	0.6	0.6	0.4	0.6	S	S	S	S	0.2	0.2
Health	310	1.1	0.3	1.0	0.2	S	0.2	0.3	0.2	0.3	0.3	0.2	0.3	0.3	0.2	0.2	0.2	0.2	0.5

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTE: Standard errors for numbers are rounded up to nearest 10 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-50. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate, race/ethnicity, and sex: 2006

Field	All full time employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
	Total	Male	Female																		
All fields	0.6	0.5	0.9	2.0	4.4	4.6	1.3	1.1	1.9	1.4	1.6	2.1	0.8	1.4	1.5	0.6	0.6	0.4	4.9	6.5	8.1
Science	0.3	1.0	S	3.6	3.1	7.4	S	0.9	0.9	1.9	2.6	1.3	2.0	1.2	1.5	0.6	S	0.3	4.5	6.0	9.2
Biological, agricultural, and environmental life sciences	0.1	0.7	1.3	7.9	6.3	7.9	2.3	2.3	2.4	2.6	4.3	1.6	3.3	3.3	2.6	1.3	1.5	1.8	11.2	S	S
Agricultural/food sciences	1.6	2.0	2.0	S	S	S	4.8	6.9	6.7	9.7	11.7	S	4.4	3.5	S	1.2	2.7	2.8	S	S	S
Biochemistry/biophysics	2.3	3.6	3.4	S	S	S	3.3	6.3	9.7	3.6	20.1	7.5	9.4	4.7	S	3.7	4.0	3.6	S	S	S
Cell/molecular biology	2.0	3.3	1.3	S	S	S	7.2	4.6	6.9	5.2	12.4	S	24.6	59.4	S	2.3	3.7	2.9	S	S	S
Environmental life sciences	2.7	4.0	8.1	S	S	S	9.1	10.4	9.5	S	S	S	S	S	S	2.3	3.0	8.3	S	S	S
Microbiology	4.0	4.5	9.3	S	S	S	12.8	10.1	5.2	18.3	S	S	9.1	S	S	3.3	3.6	11.7	S	S	S
Zoology	3.8	4.2	2.8	S	S	S	7.6	16.7	S	S	S	S	8.9	23.8	S	4.2	3.8	2.7	S	S	S
Other biological sciences	0.2	1.8	3.0	9.3	11.6	S	2.9	3.7	4.6	6.0	7.3	2.1	2.2	3.3	5.0	1.3	0.7	2.0	S	S	S
Computer and information sciences	0.9	1.5	4.0	S	S	S	1.8	1.7	7.0	4.7	S	S	6.6	7.7	S	2.4	4.5	6.1	S	S	S
Mathematics and statistics	2.5	2.3	4.1	S	S	S	3.4	3.7	12.9	6.4	5.3	S	5.5	5.6	S	3.0	1.6	2.9	S	S	S
Physical sciences	1.2	1.1	2.8	12.7	9.2	S	1.9	2.3	3.0	8.6	11.0	13.8	7.1	4.3	2.6	1.4	1.4	2.0	23.6	S	S
Astronomy/astrophysics	4.5	6.8	5.5	S	S	S	15.1	14.9	S	S	S	S	S	S	S	4.1	6.8	6.3	S	S	S
Chemistry, except biochemistry	1.5	1.6	2.2	18.0	21.6	S	1.8	3.1	5.0	11.9	13.6	13.4	3.2	3.3	3.2	0.7	1.9	3.2	S	S	S
Earth/atmospheric/ocean sciences	2.1	3.3	1.4	S	S	S	5.8	7.5	5.1	S	S	S	7.0	6.6	S	1.9	2.1	1.8	S	S	S
Physics	1.2	0.2	5.1	S	S	S	3.3	3.3	10.3	14.7	20.4	S	13.7	19.1	S	0.3	S	5.4	S	S	S
Psychology	1.1	1.7	1.5	9.4	11.5	4.7	2.3	5.1	2.1	3.1	9.8	3.3	4.2	8.7	2.7	1.4	1.6	0.5	S	S	S
Social sciences	1.0	0.4	0.9	5.4	8.2	7.5	3.0	4.1	3.2	2.0	2.6	3.0	2.9	4.1	3.2	1.3	2.6	1.0	S	S	S
Economics	3.3	1.7	3.1	S	S	S	4.6	6.2	5.2	5.5	6.1	S	6.1	7.5	S	2.0	4.5	4.8	S	S	S
Political sciences	1.9	2.8	2.0	S	S	S	5.1	9.6	5.7	2.8	4.7	3.8	6.9	7.9	S	2.4	3.0	3.0	S	S	S
Sociology	0.7	1.9	2.7	S	S	S	3.7	6.5	5.3	3.2	4.6	2.9	3.9	6.9	5.5	1.2	2.1	2.1	S	S	S
Other social sciences	1.1	2.2	1.6	6.4	10.0	S	2.2	4.6	3.6	3.6	5.1	4.1	2.4	3.6	1.2	1.4	1.9	1.5	S	S	S
Engineering	0.1	1.1	1.1	13.2	8.2	S	1.4	S	2.5	3.9	8.1	6.2	3.9	3.8	14.3	1.6	1.4	1.1	S	S	S
Aerospace/aeronautical/ astronautical engineering	4.2	3.7	12.0	S	S	S	6.7	5.8	S	S	S	S	S	S	S	4.6	4.9	S	S	S	S
Chemical engineering	2.8	1.9	1.6	S	S	S	2.7	0.6	3.1	14.0	20.4	S	18.3	11.7	S	2.0	3.1	3.1	S	S	S
Civil engineering	0.3	1.7	8.9	S	S	S	2.5	4.5	10.6	6.7	6.8	S	7.8	8.0	S	2.3	4.0	7.2	S	S	S
Electrical/computer engineering	2.3	0.3	2.2	S	S	S	2.5	3.8	1.9	11.6	13.1	S	9.6	11.1	S	4.2	4.3	3.1	S	S	S
Materials/metallurgical engineering	0.1	0.4	4.5	S	S	S	3.3	2.2	6.9	18.3	S	S	S	S	S	1.4	3.0	5.3	S	S	S
Mechanical engineering	2.3	1.4	5.9	S	S	S	2.3	2.3	3.7	S	S	S	15.8	17.0	S	2.0	2.7	5.0	S	S	S
Other engineering	1.8	2.4	3.3	S	S	S	1.2	3.1	12.2	9.8	13.8	S	2.1	1.9	S	2.9	2.2	3.4	S	S	S
Health	0.5	3.2	1.4	S	S	S	4.4	3.8	2.3	3.2	6.8	3.3	4.1	10.5	3.9	0.6	3.7	1.9	S	S	S

$\bar{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-51. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and citizenship status: 2006
(Dollars)

Field	All full time employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
All fields	600	600	700	1,300	1,700	300	1,500
Science	300	1,000	700	1,000	1,700	2,000	1,400
Biological, agricultural, and environmental life sciences	100	1,200	900	1,400	900	2,800	1,900
Agricultural/food sciences	1,700	1,100	2,400	3,900	4,500	5,600	7,300
Biochemistry/biophysics	2,300	3,500	3,500	5,400	4,600	6,900	1,000
Cell/molecular biology	2,000	2,200	2,300	5,000	4,400	6,700	5,800
Environmental life sciences	2,700	2,000	1,900	9,600	9,200	S	9,400
Microbiology	4,100	3,000	4,000	10,300	7,200	5,200	15,600
Zoology	3,900	4,000	4,000	11,600	S	S	S
Other biological sciences	200	1,400	1,600	2,300	3,100	6,200	1,900
Computer and information sciences	1,000	3,400	3,700	4,900	3,800	7,200	4,900
Mathematics and statistics	2,600	3,300	3,300	4,300	3,300	4,500	2,600
Physical sciences	1,300	1,000	500	700	3,500	1,700	1,900
Astronomy/astrophysics	4,500	4,200	4,800	22,700	12,500	S	S
Chemistry, except biochemistry	1,500	1,200	800	1,500	5,100	4,600	6,000
Earth/atmospheric/ocean sciences	2,100	2,200	3,000	4,300	3,600	7,200	3,400
Physics	1,300	900	500	5,900	5,900	3,400	2,600
Psychology	1,100	1,100	1,100	4,500	4,200	6,200	4,300
Social sciences	1,000	1,500	1,200	800	3,300	4,400	6,300
Economics	3,400	1,000	2,700	3,300	5,400	5,600	7,500
Political sciences	2,000	2,100	2,400	3,300	3,900	5,300	S
Sociology	800	1,000	1,000	3,900	2,900	6,700	S
Other social sciences	1,100	1,400	1,300	7,300	2,900	3,600	4,600
Engineering	100	700	1,500	2,500	1,500	2,300	500
Aerospace/aeronautical/astronautical engineering	4,300	1,200	4,600	2,500	7,200	22,000	15,300
Chemical engineering	2,900	2,400	2,300	3,800	4,200	3,000	15,700
Civil engineering	300	3,400	1,300	3,700	2,700	5,300	5,300
Electrical/computer engineering	2,400	3,000	4,500	1,500	2,600	2,700	3,200
Materials/metallurgical engineering	200	2,600	3,200	4,600	4,100	4,600	8,200
Mechanical engineering	2,400	1,000	900	3,400	3,100	3,200	5,300
Other engineering	1,800	2,200	2,100	3,800	1,800	4,500	10,100
Health	600	600	900	4,300	3,500	9,900	5,100

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Median annual salaries are for principal job. Standard errors are rounded up to nearest 100 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-52. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and age: 2006 (Dollars)

Field	All full time employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
All fields	600	1,000	300	900	300	1,000	1,700	1,800	500
Science	300	1,000	1,500	300	1,100	1,600	1,100	2,600	3,000
Biological, agricultural, and environmental life sciences	100	700	1,400	1,900	1,800	2,800	1,300	4,100	2,900
Agriculturalffood sciences	1,700	5,000	4,800	3,700	3,300	4,700	5,100	8,800	16,800
Biochemistry/biophysics	2,300	1,000	5,700	3,300	4,900	5,000	7,300	5,900	20,800
Cell/molecular biology	2,000	1,000	4,200	2,200	3,200	18,400	15,800	13,700	13,600
Environmental life sciences	2,700	4,100	4,400	6,500	5,900	5,000	7,900	14,400	S
Microbiology	4,100	2,300	6,500	8,700	10,900	14,700	13,000	8,500	9,300
Zoology	3,900	6,600	6,700	3,700	3,000	8,200	8,800	5,900	8,400
Other biological sciences	200	1,200	1,000	2,100	3,100	1,400	2,600	4,400	5,300
Computer and information sciences	1,000	3,600	3,500	5,900	7,800	6,400	8,400	24,500	S
Mathematics and statistics	2,600	3,300	4,200	4,100	7,000	5,300	5,900	5,500	6,600
Physical sciences	1,300	2,500	2,200	2,500	600	3,000	2,500	2,700	1,100
Astronomy/astrophysics	4,500	1,300	14,700	11,400	23,900	7,400	8,400	12,100	28,600
Chemistry, except biochemistry	1,500	3,200	3,700	2,800	2,900	3,800	3,900	3,200	4,700
Earth/atmospheric/ocean sciences	2,100	2,100	2,300	4,800	4,100	7,500	4,100	7,500	15,500
Physics	1,300	3,400	2,400	3,200	4,200	7,000	6,400	1,900	7,200
Psychology	1,100	1,700	1,100	2,300	2,000	3,000	2,200	2,600	4,000
Social sciences	1,000	2,200	1,000	2,300	2,700	2,700	3,400	3,500	2,800
Economics	3,400	5,600	2,900	4,700	9,900	4,400	2,800	12,100	3,600
Political sciences	2,000	3,000	3,300	3,500	4,600	4,700	3,300	9,300	7,300
Sociology	800	2,300	2,400	3,200	7,300	5,100	7,400	7,800	4,000
Other social sciences	1,100	2,900	1,500	1,100	4,300	3,900	4,200	3,900	6,000
Engineering	100	1,300	1,900	1,500	3,000	3,900	3,700	3,200	5,400
Aerospace/aeronautical/astronautical engineering	4,300	7,700	11,600	7,800	7,300	7,600	4,300	23,700	16,500
Chemical engineering	2,900	3,600	1,600	8,500	1,400	3,000	5,100	10,700	29,900
Civil engineering	300	3,900	2,700	1,600	5,600	6,400	2,300	6,100	9,400
Electrical/computer engineering	2,400	3,000	2,500	4,300	3,800	3,600	5,500	14,700	11,200
Materials/metallurgical engineering	200	5,600	4,200	2,000	3,100	6,200	15,000	22,200	21,800
Mechanical engineering	2,400	5,400	2,700	3,200	4,200	2,900	6,600	10,100	9,900
Other engineering	1,800	1,600	3,000	1,400	2,600	4,700	5,600	6,900	17,400
Health	600	7,100	3,600	2,200	5,800	4,800	4,300	6,700	9,700

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Median annual salaries are for principal job. Standard errors are rounded up to nearest 100 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-53. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and years since doctorate: 2006
(Dollars)

Field	All full time employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	$\begin{array}{r} \text { More } \\ \text { than } 25 \end{array}$
All fields	600	600	700	1,400	1,200	600	1,200
Science	300	1,200	1,300	1,000	900	800	1,400
Biological, agricultural, and environmental life sciences	100	300	1,300	1,100	2,800	2,400	2,900
Agriculturalfood sciences	1,700	3,400	3,600	3,400	3,200	2,400	4,100
Biochemistry/biophysics	2,300	900	5,700	4,300	8,100	3,900	5,100
Cell/molecular biology	2,000	900	3,300	3,600	6,200	11,500	9,700
Environmental life sciences	2,700	2,800	7,300	2,600	5,100	2,700	5,600
Microbiology	4,100	2,800	6,100	9,200	6,400	20,600	7,900
Zoology	3,900	3,400	2,700	4,300	2,800	9,800	3,700
Other biological sciences	200	300	2,200	1,500	3,600	4,200	2,300
Computer and information sciences	1,000	2,400	6,300	4,200	7,900	9,400	11,600
Mathematics and statistics	2,600	1,600	3,400	3,300	4,000	8,300	2,200
Physical sciences	1,300	2,000	2,700	2,600	600	2,900	2,500
Astronomy/astrophysics	4,500	1,500	6,900	12,500	21,900	10,800	7,500
Chemistry, except biochemistry	1,500	3,100	2,500	2,700	1,700	4,100	3,000
Earth/atmospheric/ocean sciences	2,100	2,100	1,700	4,600	6,200	4,500	5,800
Physics	1,300	3,100	3,100	1,000	4,800	4,000	1,200
Psychology	1,100	1,500	1,800	3,000	2,200	2,300	1,300
Social sciences	1,000	700	2,000	1,400	2,800	900	2,500
Economics	3,400	1,500	2,200	3,000	4,800	7,700	5,400
Political sciences	2,000	2,400	1,200	2,900	7,100	7,200	4,700
Sociology	800	1,700	2,300	4,000	2,800	4,600	4,400
Other social sciences	1,100	1,200	600	2,300	3,700	3,200	3,000
Engineering	100	1,500	1,200	2,600	3,300	1,700	2,000
Aerospace/aeronautical/astronautical engineering	4,300	5,500	3,700	7,200	6,000	9,400	7,200
Chemical engineering	2,900	2,400	1,500	8,100	4,600	10,800	4,800
Civil engineering	300	1,100	4,100	4,600	3,300	6,800	3,500
Electrical/computer engineering	2,400	2,600	700	1,500	6,300	5,300	4,500
Materials/metallurgical engineering	200	2,300	2,500	1,700	7,600	4,400	13,700
Mechanical engineering	2,400	4,100	5,700	2,800	4,500	5,600	12,000
Other engineering	1,800	200	3,300	2,400	3,400	5,300	6,600
Health	600	3,500	4,500	4,300	4,000	3,400	7,300

NOTES: Median annual salaries are for principal job. Standard errors are rounded up to nearest 100 .
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-54. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and sector of employment: 2006
(Dollars)

Field	All full time employed	4-year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State, local government	Selfemployed ${ }^{\text {d }}$	Other ${ }^{\text {e }}$
All fields	600	1,100	1,400	1,100	1,500	1,300	1,200	500	20,100
Science	300	200	500	400	2,000	1,800	1,700	3,700	21,300
Biological, agricultural, and environmental									
life sciences	100	1,400	1,500	1,900	1,800	1,800	5,900	9,500	S
Agricultural/food sciences	1,700	1,900	3,600	2,400	4,500	5,500	7,900	33,700	S
Biochemistry/biophysics	2,300	2,700	1,500	6,500	13,900	7,800	15,300	11,700	S
Cell/molecular biology	2,000	2,900	3,400	4,100	8,700	4,700	S	S	S
Environmental life sciences	2,700	5,300	S	7,700	27,200	5,700	9,600	S	S
Microbiology	4,100	5,500	3,300	8,300	11,300	9,000	8,900	S	S
Zoology	3,900	3,700	6,300	4,600	18,900	5,900	3,300	47,400	S
Other biological sciences	200	1,800	4,200	4,100	5,500	3,200	5,400	20,700	S
Computer and information sciences	1,000	1,100	S	4,400	12,800	6,500	6,000	S	S
Mathematics and statistics	2,600	1,600	6,400	3,400	9,000	6,800	16,900	40,400	S
Physical sciences	1,300	1,300	1,700	1,000	1,600	3,400	8,300	5,700	S
Astronomy/astrophysics	4,500	2,900	S	7,400	15,700	10,000	S	S	S
Chemistry, except biochemistry	1,500	1,100	3,400	900	5,600	2,500	3,600	12,300	S
Earth/atmospheric/ocean sciences	2,100	2,200	3,900	1,700	6,300	5,400	3,700	12,000	S
Physics	1,300	1,600	2,700	1,500	3,200	4,700	5,500	20,700	S
Psychology	1,100	1,000	1,700	3,300	3,300	1,500	2,000	4,300	S
Social sciences	1,000	1,100	3,900	3,800	5,500	1,700	2,600	9,700	17,500
Economics	3,400	1,000	5,600	6,600	4,300	6,000	7,500	18,800	18,700
Political sciences	2,000	2,300	5,900	3,600	11,500	9,400	11,800	8,200	S
Sociology	800	2,100	15,700	5,900	9,700	5,200	3,700	12,000	S
Other social sciences	1,100	1,800	3,100	3,600	5,600	2,600	4,100	18,400	S
Engineering	100	1,700	3,500	1,800	6,000	3,600	2,200	14,300	S
Aerospace/aeronautical/astronautical engineering	4,300	7,200	S	4,100	S	4,700	S	S	S
Chemical engineering	2,900	5,000	S	2,400	5,700	6,700	7,100	20,200	S
Civil engineering	300	3,500	S	2,300	S	9,600	11,500	27,500	S
Electrical/computer engineering	2,400	3,300	10,400	1,800	4,200	6,300	9,900	15,900	S
Materials/metallurgical engineering	200	3,400	S	2,800	4,900	2,700	11,900	S	S
Mechanical engineering	2,400	3,900	S	400	42,700	9,600	S	42,000	S
Other engineering	1,800	2,000	S	3,500	13,900	6,100	8,000	14,300	S
Health	600	1,500	8,700	4,000	5,900	1,600	6,100	39,600	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }} 4$-year educational institution includes 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and universityaffiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institution includes 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{\text {d }}$ Self-employed or business owner in a non-incorporated business.
${ }^{e}$ Includes employers not broken out separately.
NOTES: Median annual salaries are for principal job. Standard errors are rounded up to nearest 100.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-55. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 2006 (Dollars)

Employment sector and field	All full time employed	Male	Female
All sectors	600	600	1,000
Science	300	1,000	100
Biological, agricultural, and environmental life sciences	100	800	1,400
Computer and information sciences	1,000	1,500	4,100
Mathematics and statistics	2,600	2,300	4,200
Physical sciences	1,300	1,100	2,800
Psychology	1,100	1,700	1,500
Social sciences	1,000	500	1,000
Engineering	100	1,200	1,100
Health	600	3,300	1,500
4-year educational institutions ${ }^{\text {a }}$	1,100	1,100	500
Science	200	900	1,200
Biological, agricultural, and environmental life sciences	1,400	1,400	1,600
Computer and information sciences	1,100	1,900	2,000
Mathematics and statistics	1,600	2,200	2,000
Physical sciences	1,300	1,400	2,300
Psychology	1,000	2,100	1,400
Social sciences	1,100	1,000	1,100
Engineering	1,700	1,200	2,700
Health	1,500	4,000	1,500
Other educational institutions ${ }^{\text {b }}$	1,400	1,600	1,900
Science	500	3,100	1,900
Biological, agricultural, and environmental life sciences	1,500	3,800	3,000
Computer and information sciences	S	S	S
Mathematics and statistics	6,400	2,500	S
Physical sciences	1,700	1,900	1,300
Psychology	1,700	5,100	2,400
Social sciences	3,900	6,100	7,000
Engineering	3,500	2,800	S
Health	8,700	S	10,500
Private-for-profit ${ }^{\text {c }}$	1,100	900	1,100
Science	400	1,600	1,200
Biological, agricultural, and environmental life sciences	1,900	1,800	1,200
Computer and information sciences	4,400	5,400	3,700
Mathematics and statistics	3,400	3,300	8,000
Physical sciences	1,000	1,600	2,300
Psychology	3,300	2,200	4,300
Social sciences	3,800	7,300	4,000
Engineering	1,800	900	500
Health	4,000	5,500	3,300
Private nonprofit	1,500	2,300	2,400
Science	2,000	2,700	1,000
Biological, agricultural, and environmental life sciences	1,800	6,400	3,100
Computer and information sciences	12,800	26,300	S
Mathematics and statistics	9,000	14,300	23,200
Physical sciences	1,600	3,200	11,500
Psychology	3,300	2,700	3,000
Social sciences	5,500	14,600	4,600
Engineering	6,000	6,400	9,300
Health	5,900	20,800	6,800
Federal government	1,300	1,400	1,500
Science	1,800	600	2,100
Biological, agricultural, and environmental life sciences	1,800	1,600	4,900

TABLE A-55. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 2006 (Dollars)

Employment sector and field	All full time employed	Male	Female
Computer and information sciences	6,500	15,100	S
Mathematics and statistics	6,800	6,200	S
Physical sciences	3,400	3,200	3,100
Psychology	1,500	1,200	4,500
Social sciences	1,700	4,000	2,200
Engineering	3,600	4,000	3,500
Health	1,600	2,700	1,900
State and local government	1,200	2,100	2,500
Science	1,700	1,800	3,200
Biological, agricultural, and environmental life sciences	5,900	5,500	2,500
Computer and information sciences	6,000	6,100	S
Mathematics and statistics	16,900	16,900	S
Physical sciences	8,300	10,600	12,800
Psychology	2,000	2,300	2,400
Social sciences	2,600	3,300	3,900
Engineering	2,200	3,200	4,400
Health	6,100	2,800	5,800
Self-employed ${ }^{\text {u }}$			
Science	500	5,800	1,800
Biological, agricultural, and environmental life sciences	3,700	5,400	2,200
Computer and information sciences	9,500	8,300	30,200
Mathematics and statistics	S	S	S
Physical sciences	40,400	29,200	S
Psychology	5,700	11,700	8,000
Social sciences	4,300	2,600	5,200
Engineering	9,700	15,900	19,500
Health	14,300	15,200	S
Othere	39,600	49,300	S
Science	20,100	32,100	14,900
Biological, agricultural, and environmental life sciences	21,300	29,600	12,100
Computer and information sciences	S	S	S
Mathematics and statistics	S	S	S
Physical sciences	S	S	S
Psychology	S	S	S
Social sciences	S	S	S
Engineering	S	21,500	S
Health	S	S	
	S	S	

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }} 4$-year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institution includes 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{c}$ Includes those self-employed in an incorporated business.
${ }^{\text {d }}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTES: Median annual salaries are for principal job. Standard errors are rounded up to nearest 100.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-56. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006
(Dollars)

Employment sector and field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{a}$
All sectors	600	2,100	1,300	1,400	800	600	4,900
Science	300	3,600	100	1,900	2,100	700	4,600
Biological, agricultural, and environmental life sciences	100	7,900	2,300	2,700	3,300	1,300	11,300
Computer and information sciences	1,000	S	1,900	4,800	6,700	2,400	S
Mathematics and statistics	2,600	S	3,400	6,400	5,500	3,100	S
Physical sciences	1,300	12,800	1,900	8,600	7,100	1,500	23,700
Psychology	1,100	9,500	2,300	3,100	4,300	1,400	S
Social sciences	1,000	5,500	3,000	2,100	2,900	1,400	S
Engineering	100	13,200	1,500	4,000	3,900	1,600	S
Health	600	S	4,400	3,200	4,200	700	S
Universities and 4-year colleges ${ }^{\text {b }}$	1,100	2,700	1,500	900	1,700	800	10,300
Science	200	3,900	700	1,400	1,500	1,200	7,700
Biological, agricultural, and environmental life sciences	1,400	6,100	2,300	2,300	2,100	1,200	S
Computer and information sciences	1,100	S	3,700	S	S	2,000	S
Mathematics and statistics	1,600	S	3,600	3,500	7,600	2,700	S
Physical sciences	1,300	S	1,100	3,300	4,100	600	S
Psychology	1,000	12,200	2,500	3,500	1,900	1,900	S
Social sciences	1,100	10,100	2,000	1,700	4,000	1,300	S
Engineering	1,700	S	1,300	4,300	4,700	2,100	S
Health	1,500	S	5,500	3,600	4,900	1,500	S
Other educational institutions ${ }^{\text {c }}$	1,400	S	4,200	1,500	2,100	1,700	S
Science	500	S	6,800	1,600	2,200	1,600	S
Biological, agricultural, and environmental life sciences	1,500	S	9,300	S	S	1,500	S
Computer and information sciences	S	S	S	S	S	S	S
Mathematics and statistics	6,400	S	S	S	S	11,100	S
Physical sciences	1,700	S	S	S	S	1,800	S
Psychology	1,700	S	S	1,400	12,700	900	S
Social sciences	3,900	S	S	S	S	4,300	S
Engineering	3,500	S	3,000	S	S	6,400	S
Health	8,700	S	S	S	S	12,600	S
Private-for-profit ${ }^{\text {d }}$	1,100	8,200	100	4,100	1,700	100	19,800
Science	400	4,500	100	4,700	1,800	2,100	27,300
Biological, agricultural, and environmental life sciences	1,900	S	1,800	5,700	8,300	1,100	S
Computer and information sciences	4,400	S	3,600	S	S	5,400	S
Mathematics and statistics	3,400	S	600	S	S	2,800	S
Physical sciences	1,000	8,700	900	6,900	4,000	2,200	S
Psychology	3,300	S	13,000	19,900	11,600	3,300	S
Social sciences	3,800	S	7,800	S	20,700	6,800	S
Engineering	1,800	10,300	600	6,100	4,900	2,400	S
Health	4,000	S	12,400	S	S	4,500	S
Private not-for-profit	1,500	S	3,300	5,600	5,900	2,900	S
Science	2,000	S	4,100	6,300	4,900	2,500	S
Biological, agricultural, and environmental life sciences	1,800	S	11,200	S	4,100	5,800	S
Computer and information sciences	12,800	S	S	S	S	11,000	S
Mathematics and statistics	9,000	S	S	S	S	10,600	S
Physical sciences	1,600	S	8,200	S	S	2,300	S
Psychology	3,300	S	8,100	6,600	5,700	2,100	S
Social sciences	5,500	S	9,800	9,800	S	7,500	S
Engineering	6,000	S	8,200	S	S	3,200	S
Health	5,900	S	15,300	S	S	9,300	S
Federal government	1,300	4,300	5,800	4,600	3,900	200	S
Science	1,800	5,300	4,100	4,500	3,600	900	S

TABLE A-56. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 2006
(Dollars)

Employment sector and field	Total	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Biological, agricultural, and environmental life sciences	1,800	S	3,700	10,800	6,800	1,700	S
Computer and information sciences	6,500	S	S	S	S	6,200	S
Mathematics and statistics	6,800	S	13,000	S	S	6,800	S
Physical sciences	3,400	S	7,800	S	21,100	2,400	S
Psychology	1,500	S	S	S	S	1,700	S
Social sciences	1,700	S	9,100	S	S	3,400	S
Engineering	3,600	S	7,600	S	S	3,800	S
Health	1,600	S	30,600	S	S	1,800	S
State and local government	1,200	12,900	4,800	6,500	15,600	1,500	S
Science	1,700	S	2,900	7,800	16,700	1,500	S
Biological, agricultural, and environmental life sciences	5,900	S	22,700	S	S	4,200	S
Computer and information sciences	6,000	S	S	S	S	S	S
Mathematics and statistics	16,900	S	S	S	S	S	S
Physical sciences	8,300	S	7,600	S	S	10,300	S
Psychology	2,000	S	3,500	6,800	S	1,800	S
Social sciences	2,600	S	21,600	S	S	4,500	S
Engineering	2,200	S	8,200	S	S	5,500	S
Health	6,100	S	S	S	S	5,600	S
Self-employed ${ }^{\text {e }}$	500	S	10,500	10,400	9,100	2,100	S
Science	3,700	S	8,700	7,900	13,400	3,500	S
Biological, agricultural, and environmental life sciences	9,500	S	S	S	S	10,900	S
Computer and information sciences	S	S	S	S	S	S	S
Mathematics and statistics	40,400	S	S	S	S	40,100	S
Physical sciences	5,700	S	13,700	S	S	8,400	S
Psychology	4,300	S	S	S	26,300	4,800	S
Social sciences	9,700	S	S	S	S	12,000	S
Engineering	14,300	S	8,300	S	S	12,200	S
Health	39,600	S	S	S	S	32,600	S
Other ${ }^{\text {t }}$	20,100	S	34,600	S	S	15,300	S
Science	21,300	S	48,700	S	S	15,000	S
Biological, agricultural, and environmental life sciences	S	S	S	S	S	S	S
Computer and information sciences	S	S	S	S	S	S	S
Mathematics and statistics	S	S	S	S	S	S	S
Physical sciences	S	S	S	S	S	S	S
Psychology	S	S	S	S	S	S	S
Social sciences	17,500	S	S	S	S	22,000	S
Engineering	S	S	S	S	S	S	S
Health	S	S	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and universityaffiliated research institutions.
${ }^{c}$ Other educational institution includes 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\mathrm{d}}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{f}}$ Includes employers not broken out separately.
NOTES: Median annual salaries are for principal job. Standard errors are rounded up to nearest 100.
SOURCE: National Science Foundation/Division of Science Resources Statistics, 2006 Survey of Doctorate Recipients.

TABLE A-57. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by field of doctorate and primary or secondary work activity: 2006
(Dollars)

Field	All full time employed	Computer applications	Management, sales, administration	Professional services	$\mathrm{R} \& \mathrm{D}^{\text {a }}$	Teaching	Other
All fields	600	1,500	1,400	1,900	100	800	1,500
Science	300	2,700	1,800	1,000	900	1,000	1,400
Biological, agricultural, and environmental life sciences	100	2,300	2,700	700	400	1,200	3,000
Agricultural/food sciences	1,700	4,200	6,200	7,300	1,900	3,000	4,600
Biochemistry/biophysics	2,300	3,000	6,200	6,200	1,600	3,700	7,000
Cell/molecular biology	2,000	S	8,100	13,900	3,300	2,300	9,900
Environmental life sciences	2,700	S	5,700	15,400	3,300	3,100	9,800
Microbiology	4,100	S	5,700	9,400	4,000	3,000	15,600
Zoology	3,900	S	7,000	12,900	3,500	1,900	6,800
Other biological sciences	200	17,300	1,500	5,100	2,200	900	6,000
Computer and information sciences	1,000	2,200	9,700	9,700	3,100	1,300	6,600
Mathematics and statistics	2,600	5,800	5,100	19,000	3,100	1,400	5,200
Physical sciences	1,300	2,900	3,400	4,600	1,200	200	3,500
Astronomy/astrophysics	4,500	10,100	12,800	S	6,800	2,800	15,100
Chemistry, except biochemistry	1,500	9,500	3,000	6,800	1,400	1,800	4,200
Earth/atmospheric/ocean sciences	2,100	4,800	6,600	7,800	2,800	2,300	6,800
Physics	1,300	3,100	3,500	8,500	400	2,400	2,700
Psychology	1,100	7,100	2,300	2,100	1,800	1,800	2,200
Social sciences	1,000	9,100	2,100	6,100	1,200	1,200	2,400
Economics	3,400	26,500	9,100	17,000	5,200	1,400	10,500
Political sciences	2,000	20,100	3,700	18,500	2,000	1,700	8,300
Sociology	800	S	4,000	4,600	3,600	200	11,100
Other social sciences	1,100	5,700	3,500	5,000	2,800	2,300	3,800
Engineering	100	1,000	1,900	10,900	100	2,300	1,800
Aerospace/aeronautical/astronautical engineering	4,300	12,600	7,100	S	2,000	9,200	22,900
Chemical engineering	2,900	3,200	4,600	14,900	900	7,000	5,500
Civil engineering	300	18,600	4,900	3,900	2,400	8,100	4,200
Electrical/computer engineering	2,400	5,300	4,000	26,500	2,400	2,600	5,700
Materials/metallurgical engineering	200	8,100	8,900	27,200	2,800	9,400	2,500
Mechanical engineering	2,400	6,900	5,800	19,900	2,800	6,200	4,600
Other engineering	1,800	9,100	4,600	8,700	2,000	3,000	5,400
Health	600	S	3,500	4,200	2,900	800	6,400

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ R\&D includes applied or basic research, design, and development.
NOTES: If respondent reported more than one category of activity as the primary or secondary work activity, respondent's salary appears in both categories. Median annual salaries are for principal job. Standard errors are rounded up to nearest 100.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-58. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by employer location and broad field of doctorate: 2006
(Dollars)

Employer location	All fields	Science							Engineering	Health
		All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
All locations	600	100	100	1,000	2,600	1,300	1,100	1,000	100	600
New England	1,800	200	2,500	8,500	6,100	2,500	3,400	2,000	400	3,000
Connecticut	2,800	500	3,400	S	S	5,300	5,600	5,900	6,700	6,000
Maine	2,900	400	5,700	S	S	16,100	2,100	9,100	18,000	S
Massachusetts	1,000	600	2,900	9,700	5,500	1,000	900	3,400	1,400	8,000
New Hampshire	5,700	900	11,700	S	S	4,400	4,700	11,800	8,700	S
Rhode Island	5,900	1,000	9,100	S	S	19,900	3,500	7,300	6,400	S
Vermont	2,100	4,000	10,900	S	S	S	12,300	8,700	24,300	S
Middle Atlantic	100	200	2,600	4,900	4,600	1,300	2,900	1,700	500	3,700
New Jersey	100	100	4,500	9,400	7,400	4,200	6,900	7,400	2,400	12,500
New York	300	300	3,400	10,200	6,700	3,800	4,900	3,600	1,100	6,000
Pennsylvania	1,800	200	2,300	9,000	11,100	5,400	7,300	3,400	2,800	8,500
East North Central	1,300	300	2,600	3,500	3,900	2,400	1,200	2,400	1,600	3,300
Illinois	1,900	200	3,800	5,700	10,500	3,900	5,400	3,700	3,300	7,500
Indiana	1,700	400	7,900	S	16,200	4,600	15,700	5,500	5,200	4,100
Michigan	2,700	400	4,400	S	4,400	5,600	1,700	6,500	2,500	7,700
Ohio	900	300	4,800	14,800	10,600	3,600	4,000	2,800	3,800	5,200
Wisconsin	3,100	300	5,100	S	5,000	14,000	3,500	4,500	8,200	14,500
West North Central	1,900	200	2,100	5,700	3,900	3,200	1,700	2,500	3,700	7,000
lowa	3,000	500	4,200	S	7,500	8,800	5,400	8,800	5,900	19,900
Kansas	4,800	600	4,800	S	S	3,900	7,800	6,300	8,600	6,100
Minnesota	3,100	500	4,400	S	15,700	8,700	5,100	8,400	2,400	11,800
Missouri	2,800	300	3,700	S	7,500	7,100	4,700	5,400	6,100	10,000
Nebraska	3,800	800	5,200	S	S	S	S	S	S	S
North Dakota	4,200	400	5,300	S	S	2,500	7,900	7,300	19,000	S
South Dakota	5,200	500	16,600	S	S	S	6,600	S	S	S
South Atlantic	1,600	100	2,000	5,900	3,700	2,600	2,000	2,600	1,900	2,600
Delaware	2,600	700	5,300	S	S	11,800	5,000	S	10,900	S
District of Columbia	2,700	400	6,400	S	14,200	14,400	5,000	5,700	10,700	18,800
Florida	2,000	300	2,600	5,600	5,800	4,600	4,500	2,800	3,300	10,400
Georgia	2,400	400	5,500	S	10,600	9,100	3,700	5,000	4,000	4,700
Maryland	1,900	300	2,600	10,900	5,700	900	5,400	5,100	2,900	2,000
North Carolina	2,700	400	4,000	13,400	10,700	6,500	5,100	5,300	2,800	6,900
South Carolina	3,700	300	5,300	S	16,300	4,700	5,300	8,800	8,700	11,400
Virginia	2,000	400	5,600	35,200	7,900	2,200	5,900	3,400	5,100	10,200
West Virginia	5,700	700	10,800	S	S	13,600	S	20,300	20,100	S
East South Central	2,600	300	4,000	17,300	5,500	5,700	5,500	2,700	3,700	4,600
Alabama	4,000	500	4,500	S	15,300	8,500	8,100	7,500	6,900	7,500
Kentucky	3,600	700	7,800	S	8,300	8,800	7,200	3,500	2,200	7,900
Mississippi	2,600	500	5,000	S	S	5,800	5,700	17,800	4,400	S
Tennessee	3,500	400	3,300	S	S	11,400	7,900	3,100	6,300	6,400
West South Central	1,900	400	2,400	3,700	3,500	3,100	3,400	2,600	1,800	4,400
Arkansas	3,300	500	6,600	S	S	15,800	18,300	9,200	29,200	S
Louisiana	3,300	400	9,000	S	10,500	8,800	5,000	6,900	16,100	5,600
Oklahoma	2,800	500	5,100	S	S	8,100	10,200	11,700	7,900	S
Texas	2,200	200	2,800	6,000	9,100	3,600	3,200	4,800	2,800	8,900
Mountain	2,000	200	1,600	8,800	4,000	3,300	4,500	3,200	800	3,300
Arizona	3,400	500	5,600	S	S	8,000	5,900	5,900	4,300	17,700

TABLE A-58. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by employer location and broad field of doctorate: 2006
(Dollars)

	Science									
Employer location	All fields	All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences	Engineering	Health
Colorado	2,500	400	3,800	8,400	4,400	6,200	6,200	5,100	4,800	5,600
Idaho	6,400	400	9,200	S	S	23,200	10,000	S	10,700	S
Montana	1,300	200	2,600	S	S	8,500	9,900	S	10,700	S
New Mexico	2,100	500	8,600	S	14,000	4,700	9,700	3,800	3,500	S
Nevada	5,300	700	4,900	S	21,900	14,700	9,800	31,000	20,400	S
Utah	1,700	400	3,700	S	8,600	4,800	2,300	5,400	7,300	9,500
Wyoming	9,000	700	8,000	S	S	S	S	S	S	S
Pacific	900	100	1,700	3,100	4,900	500	3,600	900	2,400	5,600
Alaska	7,000	700	9,900	S	S	6,600	S	S	S	S
California	100	200	2,500	6,000	5,000	1,900	3,900	3,900	3,000	7,500
Hawaii	2,900	400	9,400	S	S	8,100	10,000	3,300	S	S
Oregon	2,900	300	3,800	8,900	14,900	3,700	4,500	3,500	4,100	7,700
Washington	2,500	400	2,500	13,900	20,800	3,600	3,800	2,700	4,200	8,600
Puerto Rico	2,900	500	3,900	S	S	4,400	6,400	S	S	S
Other U.S. territories and other areas	9,800	700	25,000	S	S	8,700	S	S	36,700	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Because survey sample design does not include geography, reliability of estimates in some states may be poor due to small sample size. Median annual salaries are for principal job. Standard errors are rounded up to nearest 100.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-59. Standard errors for median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, and faculty rank: 2006
(Dollars)

Field and sex	All full time employed	Full professor	Associate professor	Assistant professor	Instructorl lecturer	All other faculty	Rank not applicable
All fields	1,100	1,500	300	100	1,300	7,400	1,100
Male	1,100	100	1,300	900	2,600	6,600	700
Female	500	2,000	1,300	1,000	3,300	S	600
Science	200	1,200	100	800	1,100	9,800	1,000
Male	900	1,800	1,000	300	2,000	8,100	1,200
Female	1,200	2,000	900	300	4,000	S	500
Biological, agricultural, and environmental life sciences	1,400	2,200	1,400	1,200	2,000	S	600
Male	1,400	2,000	3,000	1,700	3,700	S	700
Female	1,600	1,700	1,800	1,500	4,200	S	900
Computer and information sciences	1,100	2,700	2,100	1,100	S	S	12,400
Male	1,900	2,500	2,700	1,200	S	S	13,200
Female	2,000	10,300	4,200	4,300	S	S	S
Mathematics and statistics	1,600	2,000	2,300	2,900	4,300	S	1,500
Male	2,200	2,500	2,800	2,400	6,500	S	1,500
Female	2,000	6,400	4,100	2,600	S	S	4,000
Physical sciences	1,300	2,400	1,400	1,200	2,500	S	300
Male	1,400	3,100	2,100	1,700	2,700	S	2,200
Female	2,300	6,700	1,800	1,700	11,300	S	2,100
Psychology	1,000	1,000	3,000	900	4,200	S	2,100
Male	2,100	1,600	3,000	900	9,300	S	5,300
Female	1,400	2,500	1,400	1,100	4,600	S	2,900
Social sciences	1,100	2,000	1,400	800	4,700	S	2,500
Male	1,000	1,700	2,000	1,000	12,700	S	4,600
Female	1,100	4,400	1,300	1,100	4,800	S	4,300
Engineering	1,700	2,200	2,000	1,000	12,000	S	3,900
Male	1,200	2,200	2,300	600	11,100	S	4,400
Female	2,700	13,200	900	2,100	S	S	1,800
Health	1,500	4,300	1,800	1,600	6,400	S	5,500
Male	4,000	5,100	4,300	3,500	S	S	5,600
Female	1,500	2,300	1,300	1,300	5,800	S	6,700
S							

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: 4-year educational institution includes 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and universityaffiliated research institutions. Median annual salaries are for principal job. Standard errors are rounded up to nearest 100 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.
 doctorate: 2006 (Dollars)

Field and sex	All full time employed		Full professor		Associate professor		Assistant professor		Instructor/ lecturer		All other faculty		Rank not applicable	
	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	$\begin{gathered} \text { Less } \\ \text { than } 10 \end{gathered}$	$\overline{10 \mathrm{or}}$ more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	Less than 10	$\overline{10 \mathrm{or}}$ more	$\begin{array}{r} \text { Less } \\ \text { than } 10 \end{array}$	$\overline{10 \mathrm{or}}$ more	Less than 10	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$	Less than 10	$\begin{aligned} & 10 \text { or } \\ & \text { more } \end{aligned}$
All fields	800	200	3,200	900	500	1,000	1,300	600	2,900	2,900	10,600	14,400	100	2,200
Male	900	900	3,800	100	2,200	600	1,200	2,200	2,300	3,600	S	21,300	300	2,600
Female	1,200	700	4,800	2,200	1,000	1,200	600	1,200	2,400	3,500	S	S	700	2,800
Science	700	800	6,400	1,300	800	500	700	400	1,600	2,800	S	S	100	1,600
Male	200	1,000	9,900	1,700	1,600	1,300	800	1,200	3,000	3,500	S	S	600	2,600
Female	100	800	15,600	2,000	1,100	900	800	1,600	2,100	3,700	S	S	700	2,600
Biological, agricultural, and environmental life sciences	900	700	S	2,100	2,000	2,900	700	2,200	3,700	3,300	S	S	700	900
Male	700	1,800	S	2,100	3,200	2,700	1,700	1,600	5,300	5,800	S	S	900	4,900
Female	1,000	2,000	S	2,200	5,800	4,100	1,200	1,600	3,400	4,600	S	S	200	2,800
Computer and information sciences	2,400	1,800	S	2,200	2,900	3,700	1,200	S	S	S	S	S	15,200	S
Male	2,600	2,300	S	2,400	3,100	5,100	1,200	S	S	S	S	S	19,500	S
Female	4,300	8,700	S	9,100	S	S	5,800	S	S	S	S	S	S	S
Mathematics and statistics	1,400	3,000	S	2,200	3,000	2,100	2,700	9,500	S	7,100	S	S	1,400	14,800
Male	1,600	2,300	S	2,600	3,300	2,600	2,900	10,800	S	S	S	S	1,600	24,100
Female	2,200	3,500	S	6,400	6,000	3,300	3,500	S	S	S	S	S	4,800	S
Physical sciences	100	1,700	S	2,700	3,900	1,900	1,500	2,300	3,600	4,600	S	S	1,500	4,700
Male	100	1,000	S	3,200	3,700	2,100	1,700	2,700	3,400	6,900	S	S	1,800	4,400
Female	1,000	2,000	S	6,600	4,500	1,600	1,900	4,600	S	S	S	S	2,500	8,300
Psychology	1,100	800	S	1,700	1,500	1,400	1,000	5,000	2,200	7,200	S	S	2,900	3,600
Male	2,000	1,400	S	1,800	4,800	3,600	2,100	3,400	S	S	S	S	5,800	8,600
Female	1,200	2,000	S	3,200	1,600	2,800	1,300	6,500	3,600	7,800	S	S	2,700	3,400
Social sciences	400	700	12,600	2,000	1,300	900	900	3,300	2,300	10,800	S	S	2,900	4,900
Male	1,700	1,800	11,700	1,700	2,400	1,900	800	7,300	3,300	23,000	S	S	4,600	9,700
Female	1,000	1,300	S	4,400	800	1,100	1,100	3,100	5,100	13,900	S	S	3,700	8,600
Engineering	1,900	2,900	4,100	1,300	2,700	2,500	1,500	800	12,000	S	S	S	1,200	14,600
Male	2,600	1,500	4,200	1,200	2,600	3,100	900	1,100	S	S	S	S	1,500	15,100
Female	2,600	3,900	S	12,800	5,400	1,400	1,500	4,400	S	S	S	S	1,000	S
Health	1,900	2,500	6,300	4,100	2,300	5,300	2,100	3,100	4,300	S	S	S	2,800	11,700
Male	2,700	5,100	S	5,500	5,900	7,000	4,600	3,100	S	S	S	S	2,800	S
Female	1,900	3,000	5,300	3,400	2,100	6,200	2,000	1,900	6,000	S	S	S	4,700	6,700

NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Median annual salaries are for principal job. Standard errors are rounded up to nearest 100.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-61. Standard errors for median annual salaries of full time employed doctoral scientists and engineers in 4 -year educational institutions, by broad field of doctorate, race/ethnicity, and faculty rank: 2006
(Dollars)

Field and race/ethnicity	All full time employed	$\begin{array}{r} \text { Full } \\ \text { professor } \end{array}$	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
All fields	1,100	1,500	300	100	1,300	7,400	1,100
American Indian/Alaska Native	2,700	6,100	14,000	4,300	S	S	10,900
Asian	1,500	1,400	1,000	3,000	5,400	S	1,400
Black	900	3,400	3,300	1,500	4,500	S	2,800
Hispanic	1,700	4,900	2,000	1,100	6,900	S	3,200
White	800	700	1,400	900	1,100	10,300	600
Other race/ethnicity ${ }^{\text {a }}$	10,300	S	S	S	S	S	S
Science	200	1,200	100	800	1,100	9,800	1,000
American Indian/Alaska Native	3,900	10,100	13,500	4,100	S	S	S
Asian	700	3,700	1,000	2,500	3,500	S	1,400
Black	1,400	4,400	2,700	1,800	6,100	S	4,700
Hispanic	1,500	5,500	1,900	1,300	S	S	3,700
White	1,200	1,800	100	700	1,000	11,000	600
Other race/ethnicity ${ }^{\text {a }}$	7,700	S	S	S	S	S	S
Biological, agricultural, and environmental life sciences	1,400	2,200	1,400	1,200	2,000	S	600
American Indian/Alaska Native	6,100	13,200	S	S	S	S	S
Asian	2,300	5,100	1,200	2,300	3,000	S	400
Black	2,300	5,900	6,100	2,900	S	S	3,100
Hispanic	2,100	4,900	3,200	2,500	S	S	1,300
White	1,200	2,200	1,300	1,100	3,500	S	800
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Computer and information sciences	1,100	2,700	2,100	1,100	S	S	12,400
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	3,700	2,700	7,800	1,100	S	S	S
Black	S	S	S	S	S	S	S
Hispanic	S	S	S	S	S	S	S
White	2,000	6,500	3,200	4,100	S	S	8,600
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Mathematics and statistics	1,600	2,000	2,300	2,900	4,300	S	1,500
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	3,600	8,400	1,700	4,800	S	S	4,000
Black	3,500	S	S	S	S	S	S
Hispanic	7,600	10,100	S	S	S	S	S
White	2,700	2,800	2,400	1,800	4,500	S	1,700
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Physical sciences	1,300	2,400	1,400	1,200	2,500	S	300
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	1,100	11,800	6,100	2,400	S	S	3,000
Black	3,300	S	S	S	S	S	S
Hispanic	4,100	11,100	12,400	S	S	S	7,900
White	600	2,800	1,200	1,400	3,100	S	2,200
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Psychology	1,000	1,000	3,000	900	4,200	S	2,100
American Indian/Alaska Native	12,200	S	S	S	S	S	S
Asian	2,500	S	6,900	1,100	S	S	3,000
Black	3,500	8,800	5,800	3,900	S	S	8,100
Hispanic	1,900	8,100	4,600	600	S	S	4,900
White	1,900	1,700	3,100	800	3,400	S	3,000
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Social sciences	1,100	2,000	1,400	800	4,700	S	2,500
American Indian/Alaska Native	10,100	S	S	S	S	S	S

TABLE A-61. Standard errors for median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and faculty rank: 2006
(Dollars)

Field and race/ethnicity	All full time employed	$\begin{array}{r} \text { Full } \\ \text { professor } \end{array}$	Associate professor	Assistant professor	Instructor/ lecturer	All other faculty	Rank not applicable
Asian	2,000	2,800	2,600	2,300	S	S	2,800
Black	1,700	8,900	2,700	3,300	S	S	13,000
Hispanic	4,000	4,000	2,700	2,000	S	S	9,300
White	1,300	1,400	2,000	1,000	5,800	S	2,500
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Engineering	1,700	2,200	2,000	1,000	12,000	S	3,900
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	1,300	3,200	6,400	1,700	S	S	1,700
Black	4,300	6,600	S	4,300	S	S	S
Hispanic	4,700	12,300	S	3,300	S	S	S
White	2,100	5,600	1,800	700	8,300	S	3,200
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S
Health	1,500	4,300	1,800	1,600	6,400	S	5,500
American Indian/Alaska Native	S	S	S	S	S	S	S
Asian	5,500	S	S	5,400	S	S	4,900
Black	3,600	S	5,800	7,900	S	S	S
Hispanic	4,900	S	S	S	S	S	S
White	1,500	3,400	1,700	1,800	8,600	S	9,000
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and universityaffiliated research institutions. Median annual salaries are for principal job. Standard errors are rounded up to nearest 100.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-62. Standard errors for median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, and tenure status: 2006
(Dollars)

Field and sex	All full time employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
All fields	1,100	700	900	1,500	100
Male	1,100	500	500	2,100	1,300
Female	500	1,000	1,200	1,700	1,400
Science	200	1,100	700	1,400	100
Male	900	1,200	1,000	1,000	1,300
Female	1,200	400	400	400	1,100
Biological, agricultural, and environmental life sciences	1,400	500	1,400	1,600	400
Male	1,400	2,000	1,700	2,800	300
Female	1,600	2,900	2,700	2,000	1,100
Computer and information sciences	1,100	3,100	1,600	15,100	5,300
Male	1,900	3,800	1,700	17,400	4,700
Female	2,000	4,700	5,200	S	S
Mathematics and statistics	1,600	2,500	2,600	3,900	1,500
Male	2,200	2,500	2,900	4,100	1,600
Female	2,000	3,300	3,700	17,100	5,500
Physical sciences	1,300	2,200	1,100	4,600	100
Male	1,400	1,500	1,400	6,000	2,200
Female	2,300	2,100	2,100	5,200	2,000
Psychology	1,000	1,300	1,500	3,100	2,200
Male	2,100	1,300	1,600	7,500	700
Female	1,400	2,300	1,400	3,500	3,000
Social sciences	1,100	300	700	3,400	2,900
Male	1,000	2,900	1,900	9,100	4,400
Female	1,100	2,200	700	3,100	2,500
Engineering	1,700	2,900	1,300	2,700	2,800
Male	1,200	1,200	1,600	4,100	2,000
Female	2,700	3,700	4,100	5,500	1,700
Health	1,500	3,300	1,600	3,300	4,500
Male	4,000	5,300	4,600	6,400	11,600
Female	1,500	2,800	1,500	2,900	3,400

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: 4-year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Median annual salaries are for principal job. Standard errors are rounded up to nearest 100 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-63. Standard errors for median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, sex, tenure status, and years since doctorate: 2006
(Dollars)

Field and sex	All full time employed		Tenured		Not tenured				Tenure not applicable	
			On tenure track	Not on tenure track						
	Less than 10	10 or more			Less than 10	10 or more				
All fields	800	200	1,100	1,200	300	1,400	1,500	1,700	800	2,600
Male	900	900	1,500	600	1,000	1,300	1,100	1,500	800	1,700
Female	1,200	700	800	600	500	2,700	2,200	3,300	600	2,100
Science	700	800	1,400	1,100	900	3,000	1,400	2,100	500	1,900
Male	200	1,000	1,900	800	600	800	1,700	3,300	700	3,900
Female	100	800	1,200	1,700	700	2,700	1,900	2,200	600	1,600
Biological, agricultural, and environmental life sciences	900	700	2,900	1,900	1,600	3,000	1,700	2,000	700	2,300
Male	700	1,800	2,600	1,900	1,900	3,200	2,300	4,100	600	3,600
Female	1,000	2,000	6,000	3,000	2,000	2,900	1,900	4,900	100	3,900
Computer and information sciences	2,400	1,800	2,300	4,000	1,500	3,900	13,200	S	9,000	6,800
Male	2,600	2,300	3,400	4,400	1,600	4,800	7,600	S	8,100	S
Female	4,300	8,700	S	4,200	5,800	S	S	S	S	S
Mathematics and statistics	1,400	3,000	3,200	2,300	1,800	6,400	3,200	10,300	1,700	14,200
Male	1,600	2,300	4,300	3,600	3,300	5,600	3,000	8,600	1,900	15,400
Female	2,200	3,500	5,900	7,200	3,300	S	S	22,800	3,800	S
Physical sciences	100	1,700	2,900	1,100	1,300	3,700	2,700	6,300	1,200	3,900
Male	100	1,000	2,900	3,100	1,700	3,400	2,500	6,900	1,400	3,500
Female	1,000	2,000	5,000	3,000	1,900	12,000	6,400	13,200	2,500	6,800
Psychology	1,100	800	3,200	2,800	1,200	4,800	3,000	5,300	3,300	4,300
Male	2,000	1,400	6,000	2,200	1,800	10,700	4,800	6,400	5,500	5,300
Female	1,200	2,000	3,100	1,900	1,200	6,600	3,500	6,800	2,500	6,100
Social sciences	400	700	1,500	2,000	800	3,500	1,700	6,600	3,300	4,100
Male	1,700	1,800	3,100	1,500	1,400	5,400	2,100	10,100	3,900	6,000
Female	1,000	1,300	900	1,900	700	6,300	3,100	9,100	3,400	3,600
Engineering	1,900	2,900	2,300	300	1,300	5,300	3,000	19,100	1,100	7,400
Male	2,600	1,500	2,000	1,100	1,500	5,600	2,400	19,100	1,100	10,600
Female	2,600	3,900	5,700	4,100	4,300	S	S	S	900	12,600
Health	1,900	2,500	1,800	2,300	1,900	3,600	3,400	10,200	2,500	4,800
Male	2,700	5,100	6,500	7,100	4,600	14,700	S	14,100	2,800	6,800
Female	1,900	3,000	1,800	2,300	2,100	2,500	4,700	4,400	4,000	8,600

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: Median annual salaries are for principal job. 4-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions. Standard errors are rounded up to nearest 100.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-64. Standard errors for median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and tenure status: 2006
(Dollars)

Field and race/ethnicity	All full time employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
All fields	1,100	700	900	1,500	100
American Indian/Alaska Native	2,700	8,600	4,500	S	10,800
Asian	1,500	2,700	1,700	3,600	600
Black	900	3,700	1,900	3,600	3,400
Hispanic	1,700	3,000	1,500	4,500	1,500
White	800	1,000	1,100	1,900	1,500
Other race/ethnicity ${ }^{\text {a }}$	10,300	S	S	S	S
Science	200	1,100	700	1,400	100
American Indian/Alaska Native	3,900	5,500	4,300	S	11,400
Asian	700	2,200	3,600	3,200	600
Black	1,400	1,900	1,800	3,400	3,900
Hispanic	1,500	3,900	1,200	6,000	1,100
White	1,200	700	1,000	1,600	1,600
Other race/ethnicity ${ }^{\text {a }}$	7,700	S	S	S	S
Biological, agricultura, and environmental life sciences	1,400	500	1,400	1,600	400
American Indian/Alaska Native	6,100	11,300	S	S	S
Asian	2,300	5,100	4,500	3,100	1,300
Black	2,300	6,100	6,500	2,700	3,700
Hispanic	2,100	4,300	3,700	21,700	1,600
White	1,200	800	1,500	2,000	1,100
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Computer and information sciences	1,100	3,100	1,600	15,100	5,300
American Indian/Alaska Native	S	S	S	S	S
Asian	3,700	4,200	1,600	S	S
Black	S	S	S	S	S
Hispanic	S	S	S	S	S
White	2,000	5,700	3,800	13,400	4,600
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Mathematical sciences	1,600	2,500	2,600	3,900	1,500
American Indian/Alaska Native	S	S	S	S	S
Asian	3,600	4,500	7,400	S	3,700
Black	3,500	S	S	S	S
Hispanic	7,600	10,600	S	S	S
White	2,700	2,500	2,300	3,700	1,800
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Physical sciences	1,300	2,200	1,100	4,600	100
American Indian/Alaska Native	S	S	S	S	S
Asian	1,100	4,400	2,300	11,800	3,200
Black	3,300	9,100	S	S	S
Hispanic	4,100	7,900	S	S	S
White	600	2,500	1,300	4,300	3,000
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Psychology	1,000	1,300	1,500	3,100	2,200
American Indian/Alaska Native	12,200	S	S	S	S
Asian	2,500	5,900	1,800	S	3,700
Black	3,500	9,000	4,400	S	7,600
Hispanic	1,900	5,300	2,700	S	2,500
White	1,900	1,500	1,900	2,900	1,500
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S

TABLE A-64. Standard errors for median annual salaries of full time employed doctoral scientists and engineers in 4-year educational institutions, by broad field of doctorate, race/ethnicity, and tenure status: 2006
(Dollars)

Field and race/ethnicity	All full time employed	Tenured	Not tenured		Tenure not applicable
			On tenure track	Not on tenure track	
Social sciences	1,100	300	700	3,400	2,900
American Indian/Alaska Native	10,100	5,000	S	S	S
Asian	2,000	3,700	2,800	11,500	5,100
Black	1,700	2,800	2,500	S	6,200
Hispanic	4,000	3,800	2,000	S	3,300
White	1,300	500	700	3,700	2,700
Other racelethnicity ${ }^{\text {a }}$	S	S	S	S	S
Engineering	1,700	2,900	1,300	2,700	2,800
American Indian/Alaska Native	S	S	S	S	S
Asian	1,300	5,000	2,900	3,000	2,600
Black	4,300	9,300	3,400	S	S
Hispanic	4,700	5,200	3,000	S	S
White	2,100	2,200	1,500	3,000	4,500
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S
Health	1,500	3,300	1,600	3,300	4,500
American Indian/Alaska Native	S	S	S	S	S
Asian	5,500	S	7,200	S	17,500
Black	3,600	5,600	11,900	S	S
Hispanic	4,900	S	S	S	S
White	1,500	3,500	1,600	3,900	6,500
Other race/ethnicity ${ }^{\text {a }}$	S	S	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTES: Median annual salaries are for principal job. 4-year educational institutions include 4 -year colleges or universities, medical schools (including universityaffiliated hospitals or medical centers), and university-affiliated research institutions. Standard errors are rounded up to nearest 100 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-65. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006
(Thousands of dollars)

	All full time employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{a}$		
Occupation	Total	Male	Female																		
All occupations	0.6	0.5	0.9	2.0	4.4	4.6	1.3	1.1	1.9	1.4	1.6	2.1	0.8	1.4	1.5	0.6	0.6	0.4	4.9	6.5	8.1
Science occupations	0.8	1.1	0.8	2.4	3.3	7.7	0.4	1.5	1.1	1.1	1.4	2.3	1.3	2.3	1.9	0.6	0.8	1.0	4.2	7.7	S
Biological, agricultural, or other life scientist	1.1	0.3	1.0	6.3	11.3	9.1	1.0	3.4	2.7	2.6	3.9	2.2	2.9	4.0	3.7	1.4	1.2	1.3	S	S	S
Agricultural/food scientist	3.1	1.8	5.1	S	S	S	4.0	4.1	9.8	8.3	12.9	S	4.7	6.6	S	0.9	2.5	7.5	S	S	S
Biochemist/biophysicist	4.1	1.6	7.9	S	S	S	6.0	7.0	9.9	S	S	S	4.5	S	S	1.9	4.8	9.9	S	S	S
Biological scientist	3.0	2.5	3.8	S	S	S	4.8	5.2	4.6	5.4	S	S	5.8	6.6	3.6	2.2	2.7	2.2	S	S	S
Forestry/conservation scientist	3.7	4.2	8.7	S	S	S	S	S	S	S	S	S	S	S	S	3.8	4.6	10.5	S	S	S
Medical scientist	1.9	1.5	2.2	11.1	S	S	3.5	4.1	8.5	7.1	13.0	7.3	4.0	9.3	3.6	0.9	1.1	3.8	S	S	S
Postsecondary teacher, agricultural/other natural sciences	2.1	2.7	4.8	S	S	S	11.0	12.3	S	S	S	S	S	S	S	1.7	2.9	5.7	S	S	S
Postsecondary teacher, biological sciences	0.7	1.8	1.6	S	S	S	3.6	3.9	7.8	3.6	4.3	2.8	3.0	5.8	5.5	0.9	1.7	1.4	S	S	S
Other biological/agricultural/life scientist	2.6	2.6	8.2	S	S	S	8.8	4.4	14.3	S	S	S	11.3	S	S	4.3	7.9	7.4	S	S	S
Computer and information scientist	1.4	0.9	2.5	S	S	S	1.7	2.3	2.6	3.1	2.5	S	9.9	13.3	S	1.5	0.3	4.9	S	S	S
Computer/information scientist	1.5	2.0	1.7	S	S	S	0.8	0.6	1.5	4.6	6.8	S	7.3	6.4	S	2.5	4.3	4.1	S	S	S
Postsecondary teacher, computer science	0.6	2.3	3.5	S	S	S	1.2	2.0	2.4	S	S	S	S	S	S	2.5	1.8	1.5	S	S	S
Mathematical scientist	1.6	1.4	2.8	S	S	S	2.7	3.1	6.4	3.7	6.8	3.0	4.0	4.6	S	1.5	2.4	2.6	S	S	S
Mathematical scientist	0.5	1.7	8.3	S	S	S	6.2	4.3	4.4	S	S	S	8.8	9.9	S	3.4	3.6	5.4	S	S	S
Postsecondary teacher, mathematics/statistics	0.6	2.6	1.2	S	S	S	3.0	2.5	6.7	2.8	S	S	2.3	3.6	S	1.9	3.1	2.9	S	S	S
Physical scientist	1.0	2.1	1.3	3.9	7.8	S	3.3	3.2	5.0	3.7	6.7	6.2	5.6	8.6	3.4	0.6	2.0	2.0	S	S	S
Chemist, except biochemist	0.5	1.6	2.6	S	S	S	2.2	3.7	8.8	11.8	4.5	S	3.3	3.5	S	1.6	1.4	2.1	S	S	S
Earth/atmospheric/ocean scientist	2.9	4.6	5.9	S	S	S	7.5	11.1	6.2	S	S	S	10.8	13.2	S	5.2	5.5	9.9	S	S	S
Physicist/astronomer	0.7	2.8	4.3	S	S	S	5.8	6.7	16.8	S	S	S	11.0	15.0	S	2.5	2.9	6.4	S	S	S
Postsecondary teacher, chemistry	1.6	1.4	1.4	S	S	S	3.4	3.3	S	3.9	4.6	S	6.8	21.6	S	1.7	1.2	1.6	S	S	S
Postsecondary teacher, physics	1.1	1.2	6.4	S	S	S	9.6	9.8	S	S	S	S	4.2	4.6	S	0.8	1.8	6.8	S	S	S
Postsecondary teacher, other physical sciences	1.6	1.7	3.2	S	S	S	2.8	3.1	S	S	S	S	S	S	S	1.5	1.8	3.0	S	S	S
Other physical scientist	4.2	2.4	6.5	S	S	S	7.9	12.6	S	S	S	S	S	S	S	4.3	3.8	5.9	S	S	S
Psychologist	1.7	0.2	1.2	10.4	12.2	6.4	6.0	6.6	4.5	2.5	7.1	4.5	4.1	12.1	4.4	1.1	0.7	2.0	S	S	S
Psychologist	1.0	3.2	2.4	8.6	S	S	2.4	7.9	3.2	4.9	10.4	3.8	6.1	5.3	5.2	0.1	3.5	1.5	S	S	S
Postsecondary teacher, psychology	1.1	2.9	1.4	S	S	S	4.5	S	8.7	4.8	5.4	5.3	3.9	6.0	1.7	1.1	3.0	1.1	S	S	S
Social scientist	1.4	2.0	1.6	6.6	8.9	S	3.0	4.5	3.0	2.2	1.6	3.1	1.9	8.3	2.7	0.8	1.5	1.9	S	S	S
Economist	5.9	7.8	4.0	S	S	S	10.0	18.7	4.8	S	S	S	24.2	29.5	S	6.9	7.3	10.4	S	S	S
Political scientist	4.8	6.7	7.4	S	S	S	S	S	S	S	S	S	S	S	S	8.0	5.3	6.6	S	S	S
Postsecondary teacher, economics	3.6	3.1	1.4	S	S	S	6.0	7.5	8.6	7.8	7.8	S	S	S	S	3.4	3.8	0.9	S	S	S
Postsecondary teacher, political science	2.1	2.3	3.9	S	S	S	7.7	S	S	4.5	7.6	S	6.4	S	S	2.6	2.9	4.2	S	S	S
Postsecondary teacher, sociology	1.6	2.7	1.7	S	S	S	7.3	S	S	3.5	5.5	3.8	7.3	S	S	1.6	3.2	1.6	S	S	S

TABLE A-65. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 2006

Occupation	All full time employed			American Indian/ Alaska Native			Asian			Black			Hispanic			White			Other race/ethnicity ${ }^{\text {a }}$		
	Total	Male	Female	Total	Male																
Postsecondary teacher, other social sciences	1.7	2.7	3.0	13.8	S	S	5.9	5.8	2.0	2.5	S	7.4	7.5	11.0	3	2.0	2.8	3.1	S	S	S
Sociologist/anthropologist	1.7	5.6	4.1	S	S	S	S	S	S	S	S	S	S	S	S	4.5	5.5	3.9	S	S	S
Other social scientist	2.8	3.3	3.9	S	S	S	6.6	S	5.2	6.4	S	7.0	S	S	S	3.5	2.9	4.9	S	S	S
Engineering occupations	1.0	0.2	1.2	6.9	6.1	S	1.4	1.9	3.2	5.9	5.6	13.5	3.8	4.5	9.8	0.04	0.6	1.1	S	S	S
Aerospace/aeronautical/astronautical engineer	0.4	0.6	8.7	S	S	S	6.0	6.0	S	S	S	S	S	S	S	1.4	3.1	7.2	S	S	S
Chemical engineer	2.7	1.9	6.7	S	S	S	0.9	2.1	11.8	S	S	S	S	S	S	2.7	2.4	6.9	S	S	S
Civil/architectural/sanitary engineer	4.5	5.8	6.3	S	S	S	6.8	5.8	S	S	S	S	4.0	3.8	S	4.7	7.2	3.9	S	S	S
Electrical engineer	1.9	0.2	2.5	S	S	S	2.7	3.3	3.1	S	S	S	19.9	10.6	S	2.8	2.9	3.0	S	S	S
Materials/metallurgical engineer	10.0	13.1	S	S	S	S	15.6	20.5	S	S	S	S	S	S	S	17.1	19.4	S	S	S	S
Mechanical engineer	1.7	1.8	13.0	S	S	S	1.7	1.6	2.9	S	S	S	S	S	S	1.5	1.6	S	S	S	S
Postsecondary teacher, engineering	1.3	2.2	1.9	S	S	S	1.7	5.8	2.2	5.0	5.6	S	4.4	3.9	S	2.1	1.3	3.5	S	S	S
Other engineer	1.3	2.1	1.2	S	S	S	2.2	2.3	4.4	14.6	S	S	3.7	4.7	S	1.4	0.6	3.0	S	S	S
Science and engineering-related occupations	1.5	2.7	2.2	14.7	29.3	S	7.3	5.4	8.6	3.4	8.1	4.6	2.5	23.7	6.4	1.1	3.8	3.0	S	S	S
Health occupation, except postsecondary teacher	3.5	8.9	3.8	S	S	S	15.8	22.9	21.0	6.2	31.6	9.1	7.1	43.7	8.4	3.3	8.9	4.2	S	S	S
Postsecondary teacher, health and related sciences	2.6	2.8	0.7	S	S	S	4.5	13.7	6.4	5.0	7.8	5.9	7.0	S	7.0	1.4	3.8	1.0	S	S	S
SEH manager	2.9	2.0	5.6	S	S	S	3.1	3.8	10.2	13.1	16.3	S	20.6	15.9	S	2.9	2.9	6.3	S	S	S
SEH precollege teacher	1.1	1.8	1.1	S	S	S	2.0	S	S	S	S	S	S	S	S	1.0	2.0	1.7	S	S	S
SEH technician/technologist	6.8	7.0	11.5	S	S	S	14.4	16.2	15.8	S	S	S	S	S	S	6.3	6.5	S	S	S	S
Other SEH-related occupation	7.0	6.5	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Non-science and engineering occupations	0.4	1.3	2.6	11.1	17.8	10.8	1.2	3.7	3.9	3.3	6.6	6.6	3.8	3.7	7.5	2.4	3.6	2.8	S	S	S
Arts/humanities-related occupation	2.4	4.3	4.0	S	S	S	3.0	S	S	S	S	S	S	S	S	4.2	7.6	4.7	S	S	S
Management-related occupation	2.3	1.8	3.0	S	S	S	4.6	3.7	11.4	7.2	7.1	5.0	6.7	6.6	S	2.6	2.2	3.4	S	S	S
Non-SEH manager	2.4	3.0	5.8	33.5	34.5	S	8.3	6.4	16.8	8.3	10.5	9.1	12.7	10.0	15.2	1.6	4.6	2.4	S	S	S
Non-SEH postsecondary teacher	2.4	3.1	2.2	S	S	S	4.0	13.1	6.3	3.0	6.5	4.2	3.2	7.0	3.7	1.5	3.5	2.5	S	S	S
Non-SEH precollege/other teacher	4.9	11.9	7.7	S	S	S	S	S	S	S	S	S	S	S	S	7.1	18.4	9.4	S	S	S
Sales/marketing occupation	5.8	7.5	11.2	S	S	S	5.6	6.8	S	S	S	S	S	S	S	5.6	8.0	8.4	S	S	S
Social service-related occupation	4.0	2.9	3.2	S	S	S	8.4	S	S	9.4	S	S	S	S	S	3.6	3.6	2.9	S	S	S
Other non-SEH occupation	4.7	10.9	11.1	S	S	S	23.8	19.5	24.6	23.3	S	S	14.0	S	S	4.9	12.3	15.4	S	S	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{a}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-66. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and citizenship status: 2006 (Thousands of dollars)

Occupation	All full time employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
All occupations	0.6	0.5	0.7	1.2	1.7	0.3	1.4
Science occupations	0.8	0.1	0.9	1.9	1.1	0.5	1.1
Biological, agricultural, or other life scientist	1.1	1.8	1.0	1.9	1.7	3.4	1.7
Agricultural/food scientist	3.1	2.0	1.0	3.9	4.2	7.0	8.3
Biochemist/biophysicist	4.1	1.6	1.7	5.5	2.5	6.7	2.2
Biological scientist	3.0	2.5	2.2	2.8	2.4	2.4	0.9
Forestry/conservation scientist	3.7	3.8	3.5	S	S	S	S
Medical scientist	1.9	0.8	1.0	3.6	2.4	7.3	0.4
Postsecondary teacher, agricultural/other natural sciences	2.1	2.3	1.9	13.9	7.0	S	S
Postsecondary teacher, biological sciences	0.7	0.7	1.1	3.2	7.5	5.3	S
Other biological/agricultura/l/ife scientist	2.6	5.5	4.2	2.7	15.3	9.3	26.5
Computer and information scientist	1.4	0.3	2.1	1.7	3.1	3.8	4.0
Computerlinformation scientist	1.5	2.1	1.8	3.3	2.5	2.0	9.1
Postsecondary teacher, computer science	0.6	2.5	1.8	3.2	2.1	2.5	5.0
Mathematical scientist	1.6	1.9	2.2	6.0	2.4	4.6	2.1
Mathematical scientist	0.5	2.5	2.6	4.2	5.2	9.5	4.2
Postsecondary teacher, mathematics/statistics	0.6	2.1	2.0	5.1	2.7	2.5	1.3
Physical scientist	1.0	2.0	1.0	2.2	2.8	3.5	1.9
Chemist, except biochemist	0.5	1.6	1.5	1.9	1.8	5.1	10.2
Earth/atmospheric/ocean scientist	2.9	4.5	5.3	5.8	4.5	7.6	1.4
Physicist/astronomer	0.7	2.1	2.4	4.4	5.4	6.3	4.9
Postsecondary teacher, chemistry	1.6	1.4	1.7	4.2	3.9	4.4	8.7
Postsecondary teacher, physics	1.1	1.5	0.6	4.3	5.0	7.4	5.7
Postsecondary teacher, other physical sciences	1.6	1.5	1.4	8.2	4.4	11.1	S
Other physical scientist	4.2	3.4	4.4	8.8	11.1	S	S
Psychologist	1.7	1.7	1.9	4.8	6.5	6.4	8.5
Psychologist	1.0	1.0	1.0	5.1	9.5	9.4	16.7
Postsecondary teacher, psychology	1.1	1.0	1.2	3.8	5.7	8.7	S
Social scientist	1.4	1.7	1.9	2.7	2.5	3.8	6.6
Economist	5.9	6.8	6.6	7.1	13.9	15.2	42.4
Political scientist	4.8	6.1	6.7	S	S	S	S
Postsecondary teacher, economics	3.6	4.5	4.0	3.6	5.2	3.7	7.9
Postsecondary teacher, political science	2.1	2.3	2.5	8.1	8.3	8.4	S
Postsecondary teacher, sociology	1.6	1.4	1.5	5.9	4.6	4.0	S
Postsecondary teacher, other social sciences	1.7	1.8	1.9	4.5	2.7	6.2	3.7
Sociologist/anthropologist	1.7	2.3	4.5	S	S	S	S
Other social scientist	2.8	3.6	3.6	5.8	10.5	S	S
Engineering occupations	1.0	0.1	0.1	0.1	2.5	2.5	0.7
Aerospace/aeronautical/astronautical engineer	0.4	0.7	1.3	1.0	25.5	40.6	S
Chemical engineer	2.7	3.1	3.1	3.2	4.9	6.5	23.3
Civil/architectural/sanitary engineer	4.5	2.2	5.5	5.4	2.4	5.3	6.4
Electrical engineer	1.9	3.1	3.1	3.4	0.1	4.3	4.0
Materials/metallurgical engineer	10.0	11.9	6.7	S	S	S	S
Mechanical engineer	1.7	1.1	1.8	2.6	0.7	4.6	1.7
Postsecondary teacher, engineering	1.3	1.3	1.9	1.4	2.1	1.9	4.1
Other engineer	1.3	0.9	0.5	2.5	3.3	3.8	5.8
Science and engineering-related occupations	1.5	0.4	2.4	3.7	5.3	10.8	8.7
Health occupation, except postsecondary teacher	3.5	3.7	1.9	11.5	2.9	2.8	7.7
Postsecondary teacher, health and related sciences	2.6	2.0	2.6	6.5	2.8	2.0	S
SEH manager	2.9	3.1	3.1	4.6	8.4	15.7	12.1
SEH precollege teacher	1.1	1.2	1.4	3.3	S	S	S

TABLE A-66. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and citizenship status: 2006 (Thousands of dollars)

Occupation	All full time employed	U.S. citizen			Non-U.S. citizen		
		All	Native born	Naturalized	All	Permanent resident	Temporary resident
SEH technician/technologist	6.8	7.1	6.4	20.7	19.0	18.3	12.1
Other SEH-related occupation	7.0	5.5	7.7	S	S	S	S
Non-science and engineering occupations	0.4	1.7	0.6	2.4	3.2	5.8	12.1
Arts/humanities-related occupation	2.4	2.0	3.9	4.3	S	S	S
Management-related occupation	2.3	2.5	2.6	4.2	4.6	2.9	7.8
Non-SEH manager	2.4	2.1	3.1	6.0	15.8	11.8	S
Non-SEH postsecondary teacher	2.4	2.1	2.2	6.5	5.2	7.3	9.8
Non-SEH precollege/other teacher	4.9	4.7	5.9	S	S	S	S
Sales/marketing occupation	5.8	6.8	5.6	2.1	7.3	7.9	S
Social service-related occupation	4.0	3.2	3.7	11.6	S	S	S
Other non-SEH occupation	4.7	3.8	5.0	32.5	21.5	21.5	S

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health .
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-67. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and age: 2006 (Thousands of dollars)

Occupation	All full time employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
All occupations	0.6	1.0	0.2	0.9	0.3	1.0	1.7	1.8	0.5
Science occupations	0.8	1.2	1.4	1.1	1.8	1.7	0.1	2.0	2.0
Biological, agricultural, or other life scientist	1.1	0.8	0.5	1.4	1.6	1.7	1.7	2.3	4.0
Agricultural/food scientist	3.1	7.8	3.8	3.9	3.5	4.7	5.5	9.7	12.7
Biochemist/biophysicist	4.1	0.9	8.9	6.4	4.5	8.4	7.3	12.0	18.6
Biological scientist	3.0	1.1	3.6	2.1	2.0	2.9	2.2	4.6	10.0
Forestry/conservation scientist	3.7	S	S	6.2	14.6	3.7	7.7	S	S
Medical scientist	1.9	1.7	2.3	3.2	2.4	4.7	2.3	4.2	11.8
Postsecondary teacher, agricultural/other natural sciences	2.1	4.1	5.6	5.7	4.4	2.4	7.6	5.4	S
Postsecondary teacher, biological sciences	0.7	2.1	1.3	2.3	2.9	2.7	2.0	3.1	5.9
Other biological/agricultural/life scientist	2.6	3.3	8.0	10.7	11.7	11.8	16.3	S	S
Computer and information scientist	1.4	3.4	1.8	0.9	2.8	2.5	6.0	6.6	3.1
Computerlinformation scientist	1.5	5.7	1.5	3.0	5.2	2.9	5.2	6.7	4.4
Postsecondary teacher, computer science	0.6	4.1	1.6	4.2	6.9	4.1	2.7	16.1	4.9
Mathematical scientist	1.6	4.6	3.8	3.0	8.8	2.9	3.2	7.3	5.0
Mathematical scientist	0.5	5.0	10.4	5.0	6.1	4.1	11.5	10.9	12.6
Postsecondary teacher, mathematics/statistics	0.6	2.9	4.1	4.7	1.5	3.2	4.6	4.8	9.2
Physical scientist	1.0	2.1	2.0	2.4	2.8	2.1	1.4	3.2	1.4
Chemist, except biochemist	0.5	3.0	1.7	1.5	1.9	4.3	4.2	5.7	8.7
Earth/atmospheric/ocean scientist	2.9	3.2	3.0	5.0	5.0	5.0	7.3	7.4	13.8
Physicist/astronomer	0.7	3.9	2.4	1.0	3.9	6.9	7.0	7.6	15.9
Postsecondary teacher, chemistry	1.6	0.9	1.8	3.0	3.8	4.0	6.0	6.0	9.0
Postsecondary teacher, physics	1.1	3.6	5.3	3.9	2.2	4.1	4.5	4.4	4.4
Postsecondary teacher, other physical sciences	1.6	2.0	4.2	2.6	1.4	2.3	9.2	14.0	13.8
Other physical scientist	4.2	9.1	11.7	8.5	13.3	15.8	S	S	S
Psychologist	1.7	1.6	2.5	1.3	2.9	1.5	1.1	4.2	3.7
Psychologist	1.0	3.1	3.4	3.8	1.8	2.5	3.5	5.3	6.4
Postsecondary teacher, psychology	1.1	0.6	2.2	1.1	3.1	3.9	2.7	6.2	1.7
Social scientist	1.4	2.3	1.2	2.8	2.6	2.7	1.9	5.4	3.9
Economist	5.9	6.8	9.2	5.6	12.3	18.7	17.7	24.2	15.3
Political scientist	4.8	3.4	6.2	9.0	S	S	51.1	S	S
Postsecondary teacher, economics	3.6	4.2	1.6	3.5	5.8	5.7	4.6	4.2	7.2
Postsecondary teacher, political science	2.1	3.0	1.4	3.4	3.9	3.0	6.2	5.5	5.8
Postsecondary teacher, sociology	1.6	2.0	1.9	3.8	4.0	4.2	3.8	4.9	7.2
Postsecondary teacher, other social sciences	1.7	2.7	1.3	3.3	3.6	3.4	2.9	7.5	8.9
Sociologist/anthropologist	1.7	11.7	2.5	7.2	10.0	7.3	7.0	13.9	35.4
Other social scientist	2.8	11.3	4.3	6.5	4.2	13.4	7.4	17.6	S
Engineering occupations	1.0	0.4	2.0	3.0	2.1	2.0	1.9	2.5	6.4
Aerospace/aeronautical/astronautical engineer	0.4	4.2	7.8	3.3	2.5	13.1	3.4	6.8	S
Chemical engineer	2.7	2.9	2.8	7.4	1.1	5.2	5.8	11.9	S
Civil/architectural/sanitary engineer	4.5	3.2	3.1	5.2	5.7	9.4	23.0	6.2	20.8
Electrical engineer	1.9	1.5	2.8	1.5	4.8	7.1	12.7	6.3	5.2
Materials/metallurgical engineer	10.0	S	S	S	13.4	S	S	S	S
Mechanical engineer	1.7	7.5	4.6	2.6	3.7	7.0	8.8	10.8	15.8
Postsecondary teacher, engineering	1.3	2.2	1.9	3.0	4.0	3.7	3.8	4.7	6.8
Other engineer	1.3	3.2	3.4	3.4	2.1	2.8	7.9	8.0	15.8
Science and engineering-related occupations	1.5	1.6	3.3	4.7	3.3	3.9	4.7	6.3	7.3
Health occupation, except postsecondary teacher	3.5	1.3	9.8	6.8	13.9	13.9	6.9	22.0	27.1
Postsecondary teacher, health and related sciences	2.6	3.6	2.6	3.9	7.3	3.5	3.7	6.1	9.0
SEH manager	2.9	5.2	3.6	5.5	1.3	2.2	3.2	10.1	14.5
SEH precollege teacher	1.1	S	2.1	3.5	2.6	2.6	3.7	10.5	S
SEH technician/technologist	6.8	14.5	8.4	11.7	12.6	19.6	12.0	10.3	S

TABLE A-67. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and age: 2006
(Thousands of dollars)

Occupation	All full time employed	Under 35	35-39	40-44	45-49	50-54	55-59	60-64	65-75
Other SEH-related occupation	7.0	S	S	S	S	S	S	S	S
Non-science and engineering occupations	0.4	2.2	2.5	2.8	1.9	2.5	4.6	4.7	5.4
Arts/humanities-related occupation	2.4	10.7	3.2	10.9	10.1	5.4	24.0	13.1	10.3
Management-related occupation	2.3	5.6	3.7	4.0	5.2	7.0	4.4	11.2	17.5
Non-SEH manager	2.4	24.7	7.2	4.9	4.7	4.3	3.0	4.2	9.3
Non-SEH postsecondary teacher	2.4	1.4	9.1	3.2	7.0	4.5	6.2	6.1	7.3
Non-SEH precollege/other teacher	4.9	S	S	S	8.4	8.5	8.1	S	S
Sales/marketing occupation	5.8	5.3	3.9	5.5	10.4	8.6	18.9	17.4	4.8
Social service-related occupation	4.0	8.7	6.1	6.9	3.7	6.9	3.3	9.3	10.6
Other non-SEH occupation	4.7	9.3	12.6	31.8	10.6	17.9	12.8	14.5	8.5

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-68. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and years since doctorate: 2006
(Thousands of dollars)

Occupation	All full time employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
All occupations	0.6	0.5	0.7	1.3	1.1	0.6	1.2
Science occupations	0.8	1.1	1.4	0.1	0.4	1.4	0.4
Biological, agricultural, or other life scientist	1.1	0.6	1.4	1.6	1.6	3.4	0.8
Agricultural/food scientist	3.1	4.3	5.6	4.0	8.2	1.8	5.3
Biochemist/biophysicist	4.1	1.0	4.3	2.2	4.7	9.7	9.0
Biological scientist	3.0	0.3	3.4	1.5	3.9	3.5	3.7
Forestry/conservation scientist	3.7	6.4	4.3	9.7	14.1	7.0	7.1
Medical scientist	1.9	1.3	3.0	3.9	4.6	6.3	3.5
Postsecondary teacher, agricultural/other natural sciences	2.1	4.0	3.3	3.6	5.2	3.7	7.9
Postsecondary teacher, biological sciences	0.7	1.5	1.0	1.3	2.1	2.5	2.9
Other biological/agricultural/life scientist	2.6	5.7	4.3	5.9	21.2	16.5	13.1
Computer and information scientist	1.4	2.6	1.8	2.3	6.3	6.8	5.2
Computer/information scientist	1.5	4.3	1.5	3.8	4.4	6.2	1.5
Postsecondary teacher, computer science	0.6	3.0	1.6	5.1	4.8	5.4	8.0
Mathematical scientist	1.6	2.0	4.4	5.0	4.5	3.7	3.9
Mathematical scientist	0.5	3.5	2.3	5.0	3.4	13.8	3.8
Postsecondary teacher, mathematics/statistics	0.6	1.6	3.8	2.0	4.9	4.7	3.8
Physical scientist	1.0	1.1	2.5	2.7	4.2	1.3	2.6
Chemist, except biochemist	0.5	4.0	2.6	1.9	3.2	4.9	2.2
Earth/atmospheric/ocean scientist	2.9	2.7	5.6	3.9	9.4	4.2	5.6
Physicist/astronomer	0.7	4.0	4.6	4.8	4.5	7.6	3.9
Postsecondary teacher, chemistry	1.6	1.3	1.4	1.7	3.1	3.9	4.8
Postsecondary teacher, physics	1.1	1.1	2.1	4.0	5.1	4.9	4.0
Postsecondary teacher, other physical sciences	1.6	1.7	2.4	3.1	2.2	9.9	5.8
Other physical scientist	4.2	6.9	10.8	10.3	6.0	16.1	14.9
Psychologist	1.7	1.4	1.0	2.1	1.4	4.2	1.4
Psychologist	1.0	3.7	2.3	1.3	2.4	4.4	2.8
Postsecondary teacher, psychology	1.1	0.6	2.1	0.6	2.7	3.5	3.6
Social scientist	1.4	0.6	0.9	2.8	1.8	3.8	2.0
Economist	5.9	4.5	12.5	3.6	8.9	12.2	6.9
Political scientist	4.8	4.7	5.8	S	S	S	13.8
Postsecondary teacher, economics	3.6	5.8	3.7	5.4	4.2	5.5	4.5
Postsecondary teacher, political science	2.1	1.1	1.9	1.8	2.9	4.2	9.4
Postsecondary teacher, sociology	1.6	1.7	2.3	4.3	4.0	6.7	2.9
Postsecondary teacher, other social sciences	1.7	1.1	2.3	1.4	2.6	2.4	6.0
Sociologist/anthropologist	1.7	4.3	6.3	6.9	6.4	14.0	8.7
Other social scientist	2.8	4.7	5.5	6.8	5.6	5.5	20.2
Engineering occupations	1.0	1.7	1.4	0.9	2.8	2.3	3.2
Aerospace/aeronautical/astronautical engineer	0.4	2.7	3.8	4.1	7.2	7.1	5.9
Chemical engineer	2.7	3.2	1.4	5.1	3.5	13.3	3.3
Civil/architectural/sanitary engineer	4.5	1.8	3.6	3.1	5.8	16.7	7.7
Electrical engineer	1.9	3.3	1.0	4.0	8.3	4.9	3.8
Materials/metallurgical engineer	10.0	S	S	S	S	S	S
Mechanical engineer	1.7	0.9	4.1	3.3	4.0	6.2	10.7
Postsecondary teacher, engineering	1.3	0.8	2.7	2.8	3.8	3.4	1.6
Other engineer	1.3	1.5	3.2	1.0	4.5	6.0	5.7
Science and engineering-related occupations	1.5	1.6	2.9	1.7	6.2	4.3	3.4
Health occupation, except postsecondary teacher	3.5	1.2	7.9	12.6	18.3	8.4	8.6
Postsecondary teacher, health and related sciences	2.6	1.5	2.4	1.1	2.7	4.2	4.9
SEH manager	2.9	2.3	4.3	3.7	5.1	4.0	4.4

TABLE A-68. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and years since doctorate: 2006
(Thousands of dollars)

Occupation	All full time employed	$\begin{aligned} & 5 \text { or } \\ & \text { less } \end{aligned}$	6-10	11-15	16-20	21-25	More than 25
SEH precollege teacher	1.1	1.8	1.6	3.3	1.5	5.3	5.7
SEH technician/technologist	6.8	12.0	8.7	13.0	7.4	18.3	27.8
Other SEH-related occupation	7.0	S	S	S	S	S	S
Non-science and engineering occupations	0.4	3.6	3.6	0.8	3.6	5.1	3.2
Arts/humanities-related occupation	2.4	7.9	3.1	11.6	7.5	25.0	17.3
Management-related occupation	2.3	3.4	4.0	3.8	8.8	7.9	4.4
Non-SEH manager	2.4	4.7	5.8	6.0	4.9	4.3	3.2
Non-SEH postsecondary teacher	2.4	1.5	2.2	3.3	4.1	5.4	5.1
Non-SEH precollege/other teacher	4.9	1.8	6.3	S	2.9	6.4	12.2
Sales/marketing occupation	5.8	9.1	7.1	8.0	7.5	9.6	14.5
Social service-related occupation	4.0	3.1	8.1	3.7	5.6	8.7	3.5
Other non-SEH occupation	4.7	3.9	12.3	16.8	22.6	13.9	17.3

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-69. Standard errors for median annual salaries of full-time employed doctoral scientists and engineers, by occupation and sector of employment: 2006
(Thousands of dollars)

Occupation	All full time employed	4 -year educational institutions ${ }^{\text {a }}$	Other educational institutions ${ }^{\text {b }}$	Private-for-profit ${ }^{\text { }}$	Private non-profit	Federal government		$\begin{aligned} & \text { Self- } \\ & \text { employed }{ }^{\text {d }} \end{aligned}$	Other ${ }^{\text {e }}$
All occupations	0.6	1.0	1.4	1.0	1.5	1.2	1.2	0.5	20.0
Science occupations	0.8	0.6	0.6	0.1	1.8	0.8	2.0	3.6	18.8
Biological, agricultural, or other life scientist	1.1	1.3	4.0	2.1	4.8	2.4	1.6	15.8	S
Agricultural/food scientist	3.1	3.6	S	3.1	18.7	3.9	S	43.8	S
Biochemist/biophysicist	4.1	2.0	S	2.8	10.0	10.3	S	S	S
Biological scientist	3.0	2.5	S	3.4	4.5	2.0	1.8	18.8	S
Forestry/conservation scientist	3.7	6.2	S	S	S	12.8	S	S	S
Medical scientist	1.9	1.5	S	3.5	4.7	3.5	5.6	S	S
Postsecondary teacher, agricultura/other natural sciences	2.1	2.2	S	S	S	S	S	S	S
Postsecondary teacher, biological sciences	0.7	1.3	3.7	S	S	S	S	S	S
Other biological/agricultural/life scientist	2.6	1.0	S	6.5	12.5	9.3	11.3	S	S
Computer and information scientist	1.4	0.8	S	3.2	8.9	14.4	5.4	17.1	S
Computer/information scientist	1.5	4.4	S	3.2	8.9	14.4	6.2	17.1	S
Postsecondary teacher, computer science	0.6	0.7	S	S	S	S	S	S	S
Mathematical scientist	1.6	1.7	7.5	4.0	5.5	5.6	11.1	S	S
Mathematical scientist	0.5	4.2	S	4.5	5.7	5.6	11.1	S	S
Postsecondary teacher, mathematics/statistics	0.6	0.6	9.3	S	S	S	S	S	S
Physical scientist	1.0	0.2	3.7	0.1	1.9	1.9	14.5	9.4	S
Chemist, except biochemist	0.5	3.8	S	1.2	5.8	2.1	6.2	28.5	S
Earth/atmospheric/ocean scientist	2.9	3.5	S	1.1	9.7	3.6	5.1	15.0	S
Physicist/astronomer	0.7	2.9	S	1.4	4.7	4.8	7.3	S	S
Postsecondary teacher, chemistry	1.6	1.7	3.9	S	S	S	S	S	S
Postsecondary teacher, physics	1.1	1.8	5.3	S	S	S	S	S	S
Postsecondary teacher, other physical sciences	1.6	1.6	S	S	S	S	S	S	S
Other physical scientist	4.2	10.9	S	3.1	S	6.7	5.2	S	S
Psychologist	1.7	1.0	2.7	4.0	1.1	3.5	1.4	6.0	S
Psychologist	1.0	2.5	4.4	4.0	1.0	3.5	1.4	6.0	S
Postsecondary teacher, psychology	1.1	1.1	10.8	S	S	S	S	S	S
Social scientist	1.4	1.2	1.6	8.5	8.8	1.7	4.1	18.9	34.0
Economist	5.9	6.0	S	4.5	6.2	3.3	14.4	30.3	25.4
Political scientist	4.8	8.2	S	S	S	S	S	S	S
Postsecondary teacher, economics	3.6	3.2	S	S	S	S	S	S	S
Postsecondary teacher, political science	2.1	2.0	4.5	S	S	S	S	S	S
Postsecondary teacher, sociology	1.6	1.5	6.6	S	S	S	S	S	S
Postsecondary teacher, other social sciences	1.7	1.9	S	S	S	S	S	S	S
Sociologist/anthropologist	1.7	2.3	S	8.6	12.1	5.5	6.2	S	S
Other social scientist	2.8	4.5	S	3.3	4.9	9.8	1.6	17.1	S

TABLE A-69. Standard errors for median annual salaries of full-time employed doctoral scientists and engineers, by occupation and sector of employment: 2006

(Thousands of dollars)

Occupation	All full time employed	4 -year educational institutions ${ }^{\text {a }}$	educational institutions ${ }^{\text {b }}$	Private-for-profit ${ }^{\text {c }}$	Private non-profit	Federal government	State, local government	$\begin{aligned} & \text { Self- } \\ & \text { employed }^{d} \end{aligned}$	Other ${ }^{\text {e }}$
Engineering occupations	1.0	1.7	6.8	1.3	6.3	2.9	5.1	7.0	S
Aerospace/aeronautical/astronautical engineer	0.4	18.9	S	0.7	6.6	4.9	S	S	S
Chemical engineer	2.7	31.7	S	2.0	6.5	4.6	S	S	S
Civil/architectural/sanitary engineer	4.5	3.9	S	2.7	S	22.9	4.2	42.9	S
Electrical engineer	1.9	5.6	S	0.3	5.9	4.0	7.4	15.8	S
Materials/metallurgical engineer	10.0	S	S	9.9	S	S	S	S	S
Mechanical engineer	1.7	17.7	S	1.8	S	9.8	S	S	S
Postsecondary teacher, engineering	1.3	1.4	S	S	S	S	S	S	S
Other engineer	1.3	7.0	S	1.4	7.1	3.1	5.6	22.0	S
Science and engineering-related occupations	1.5	0.9	1.3	2.7	7.9	4.4	4.1	15.6	S
Health occupation, except postsecondary teacher	3.5	8.3	S	7.9	13.1	3.2	4.8	30.9	S
Postsecondary teacher, health and related sciences	2.6	2.1	3.2	S	S	S	S	S	S
SEH manager	2.9	6.1	S	1.9	9.6	3.0	2.5	S	S
SEH precollege teacher	1.1	S	1.1	S	S	S	S	S	S
SEH technician/technologist	6.8	11.7	S	3.3	S	S	S	S	S
Other SEH-related occupation	7.0	S	S	S	S	S	S	S	S
Non-science and engineering occupations	0.4	2.6	3.5	1.5	7.7	3.8	3.6	10.4	70.2
Arts/humanities-related occupation	2.4	6.5	S	5.2	8.0	S	S	18.7	S
Management-related occupation	2.3	2.4	11.5	3.4	5.9	7.7	7.9	9.0	S
Non-SEH manager	2.4	2.0	2.5	4.6	6.1	10.0	6.8	31.0	54.6
Non-SEH postsecondary teacher	2.4	1.5	6.3	S	S	S	S	S	S
Non-SEH precollege/other teacher	4.9	S	4.3	18.5	S	S	S	S	S
Sales/marketing occupation	5.8	S	S	8.3	S	S	S	11.6	S
Social service-related occupation	4.0	8.8	2.5	5.1	1.9	S	18.4	7.4	S
Other non-SEH occupation	4.7	15.1	S	14.2	8.7	6.8	11.1	3.7	S

S = suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{3} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
Other educational institutions include 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {C Includes those self-employed in an incorporated business. }}$
${ }^{\text {d }}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-70. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and disability status: 2006
(Thousands of dollars)

Occupation	All full time employed	With disability	Without disability
All occupations	0.6	2.3	0.6
Science occupations	0.8	1.1	0.9
Biological, agricultural, or other life scientist	1.1	2.7	1.0
Agricultural/food scientist	3.1	7.7	2.4
Biochemist/biophysicist	4.1	9.8	3.9
Biological scientist	3.0	10.2	3.2
Forestry/conservation scientist	3.7	S	4.2
Medical scientist	1.9	13.3	1.9
Postsecondary teacher, agricultura//other natural sciences	2.1	21.3	2.0
Postsecondary teacher, biological sciences	0.7	6.6	1.3
Other biological/agricultural/life scientist	2.6	10.1	2.8
Computer and information scientist	1.4	4.9	1.5
Computer/information scientist	1.5	4.6	2.0
Postsecondary teacher, computer science	0.6	3.2	0.9
Mathematical scientist	1.6	4.0	1.4
Mathematical scientist	0.5	13.6	0.6
Postsecondary teacher, mathematics/statistics	0.6	5.2	0.6
Physical scientist	1.0	5.1	1.2
Chemist, except biochemist	0.5	3.2	0.6
Earth/atmospheric/ocean scientist	2.9	14.4	2.9
Physicist/astronomer	0.7	8.6	1.1
Postsecondary teacher, chemistry	1.6	4.1	0.5
Postsecondary teacher, physics	1.1	9.4	1.3
Postsecondary teacher, other physical sciences	1.6	6.2	1.8
Other physical scientist	4.2	S	4.3
Psychologist	1.7	5.4	1.8
Psychologist	1.0	7.3	0.8
Postsecondary teacher, psychology	1.1	4.9	1.1
Social scientist	1.4	4.1	1.4
Economist	5.9	6.7	8.4
Political scientist	4.8	22.0	5.2
Postsecondary teacher, economics	3.6	14.5	3.6
Postsecondary teacher, political science	2.1	9.9	1.9
Postsecondary teacher, sociology	1.6	9.2	1.7
Postsecondary teacher, other social sciences	1.7	5.1	1.6
Sociologist/anthropologist	1.7	15.6	2.0
Other social scientist	2.8	17.5	2.6
Engineering occupations	1.0	1.7	0.9
Aerospace/aeronautical/astronautical engineer	0.4	21.4	0.6
Chemical engineer	2.7	S	2.8
Civil/architectural/sanitary engineer	4.5	S	4.3
Electrical engineer	1.9	16.8	1.8
Materials/metallurgical engineer	10.0	S	10.3
Mechanical engineer	1.7	14.2	1.6
Postsecondary teacher, engineering	1.3	7.3	1.3
Other engineer	1.3	4.2	1.9
Science and engineering-related occupations	1.5	7.8	1.4
Health occupation, except postsecondary teacher	3.5	10.4	2.5
Postsecondary teacher, health and related sciences	2.6	7.2	2.7
SEH manager	2.9	17.9	3.2
SEH precollege teacher	1.1	S	1.2

TABLE A-70. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and disability status: 2006
(Thousands of dollars)

Occupation	All full time employed	With disability	Without disability
SEH technician/technologist	6.8	10.8	6.5
Other SEH-related occupation	7.0	S	6.7
Non-science and engineering occupations	0.4	5.7	0.7
Arts/humanities-related occupation	2.4	S	2.2
Management-related occupation	2.3	4.2	2.5
Non-SEH manager	2.4	6.9	2.2
Non-SEH postsecondary teacher	2.4	14.6	2.4
Non-SEH precollege/other teacher	4.9	S	6.3
Sales/marketing occupation	5.8	26.0	9.0
Social service-related occupation	4.0	S	4.6
Other non-SEH occupation	4.7	11.6	3.7

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
NOTES: The SESTAT surveys ask the degree of difficulty—none, slight, moderate, severe, or unable to do—an individual has in seeing (with glasses), hearing (with hearing aid), walking without assistance, or lifting 10 pounds. Those respondents who answered "moderate," "severe," or "unable to do" for any activity were classified as having a disability. Median annual salaries are for principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-71. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 2006
(Thousands of dollars)

Employment sector and occupation	All full time employed	Male	Female
All sectors	0.6	0.5	0.9
Science occupations	0.8	1.1	0.8
Biological, agricultural, or other life scientist	1.1	0.3	1.0
Computer and information scientist	1.4	0.9	2.5
Mathematical scientist	1.6	1.4	2.8
Physical scientist	1.0	2.1	1.3
Psychologist	1.7	0.2	1.2
Social scientist	1.4	2.0	1.6
Engineering occupations	1.0	0.2	1.2
Science and engineering-related occupations	1.5	2.7	2.2
Non-science and engineering occupations	0.4	1.3	2.6
4 -year educational institutions ${ }^{\text {a }}$	1.0	1.0	0.5
Science occupations	0.6	0.8	1.0
Biological, agricultural, or other life scientist	1.3	0.4	1.2
Computer and information scientist	0.8	2.3	3.1
Mathematical scientist	1.7	2.5	2.5
Physical scientist	0.2	1.5	1.2
Psychologist	1.0	2.8	1.2
Social scientist	1.2	1.5	1.3
Engineering occupations	1.7	0.8	0.8
Science and engineering-related occupations	0.9	3.5	1.8
Non-science and engineering occupations	2.6	1.7	3.6
Other educational institutions ${ }^{\text {b }}$	1.4	1.6	1.9
Science occupations	0.6	2.5	1.8
Biological, agricultural, or other life scientist	4.0	4.0	4.4
Computer and information scientist	S	S	S
Mathematical scientist	7.5	5.4	S
Physical scientist	3.7	4.1	9.5
Psychologist	2.7	4.9	1.9
Social scientist	1.6	2.9	2.1
Engineering occupations	6.8	6.8	S
Science and engineering-related occupations	1.3	1.8	1.8
Non-science and engineering occupations	3.5	5.2	4.1
Private for-profit ${ }^{\text {c }}$	1.0	0.8	1.0
Science occupations	0.1	1.0	1.2
Biological, agricultural, or other life scientist	2.1	1.2	1.3
Computer and information scientist	3.2	2.6	4.2
Mathematical scientist	4.0	4.3	6.7
Physical scientist	0.1	1.9	3.2
Psychologist	4.0	4.6	3.4
Social scientist	8.5	9.6	5.8
Engineering occupations	1.3	1.2	1.5
Science and engineering-related occupations	2.7	1.5	6.5
Non-science and engineering occupations	1.5	2.0	5.3
Private non-profit	1.5	2.3	2.3
Science occupations	1.8	1.4	2.2
Biological, agricultural, or other life scientist	4.8	3.8	4.1
Computer and information scientist	8.9	10.3	S
Mathematical scientist	5.5	9.1	14.7
Physical scientist	1.9	1.4	16.2
Psychologist	1.1	4.8	4.4
Social scientist	8.8	12.4	4.4
Engineering occupations	6.3	5.6	8.3
Science and engineering-related occupations	7.9	6.5	10.5
Non-science and engineering occupations	7.7	4.7	5.2

TABLE A-71. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 2006
(Thousands of dollars)

Employment sector and occupation	All full time employed	Male	Female
Federal government	1.2	1.4	1.4
Science occupations	0.8	2.0	2.4
Biological, agricultural, or other life scientist	2.4	1.6	2.9
Computer and information scientist	14.4	14.5	S
Mathematical scientist	5.6	7.1	19.1
Physical scientist	1.9	3.5	5.1
Psychologist	3.5	4.5	4.8
Social scientist	1.7	3.7	4.4
Engineering occupations	2.9	3.0	1.7
Science and engineering-related occupations	4.4	6.0	3.6
Non-science and engineering occupations	3.8	3.5	8.6
State and local government	1.2	2.1	2.5
Science occupations	2.0	2.4	3.1
Biological, agricultural, or other life scientist	1.6	2.5	7.9
Computer and information scientist	5.4	7.7	S
Mathematical scientist	11.1	S	S
Physical scientist	14.5	14.1	45.6
Psychologist	1.4	2.3	3.4
Social scientist	4.1	4.0	2.9
Engineering occupations	5.1	8.3	5.3
Science and engineering-related occupations	4.1	6.5	9.3
Non-science and engineering occupations	3.6	3.9	5.8
Self-employed ${ }^{\text {d }}$	0.5	5.7	1.8
Science occupations	3.6	3.9	6.2
Biological, agricultural, or other life scientist	15.8	13.7	S
Computer and information scientist	17.1	10.3	S
Mathematical scientist	S	S	S
Physical scientist	9.4	15.0	S
Psychologist	6.0	2.3	7.5
Social scientist	18.9	21.6	26.3
Engineering occupations	7.0	7.3	S
Science and engineering-related occupations	15.6	21.8	15.6
Non-science and engineering occupations	10.4	5.0	10.8
Other ${ }^{\text {e }}$	20.0	32.1	14.8
Science occupations	18.8	32.1	24.8
Biological, agricultural, or other life scientist	S	S	S
Computer and information scientist	S	S	S
Mathematical scientist	S	S	S
Physical scientist	S	S	S
Psychologist	S	S	S
Social scientist	34.0	28.7	S
Engineering occupations	S	S	S
Science and engineering-related occupations	S	S	S
Non-science and engineering occupations	70.2	91.3	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }} 4$-year educational institutions include 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{\mathrm{b}}$ Other educational institution includes 2 -year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {c }}$ Includes those self-employed in an incorporated business.
${ }^{\text {d }}$ Self-employed or business owner in a non-incorporated business.
${ }^{\mathrm{e}}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-72. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006
(Thousands of dollars)

Employment sector and occupation	All full time employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other racel ethnicity ${ }^{\text {a }}$
All sectors	0.6	2.0	1.3	1.4	0.8	0.6	4.9
Science occupations	0.8	2.4	0.4	1.1	1.3	0.6	4.2
Biological, agricultural, or other life scientist	1.1	6.3	1.0	2.6	2.9	1.4	S
Computer and information scientist	1.4	S	1.7	3.1	9.9	1.5	S
Mathematical scientist	1.6	S	2.7	3.7	4.0	1.5	S
Physical scientist	1.0	3.9	3.3	3.7	5.6	0.6	S
Psychologist	1.7	10.4	6.0	2.5	4.1	1.1	S
Social scientist	1.4	6.6	3.0	2.2	1.9	0.8	S
Engineering occupations	1.0	6.9	1.4	5.9	3.8	0.1	S
Science and engineering-related occupations	1.5	14.7	7.3	3.4	2.5	1.1	S
Non-science and engineering occupations	0.4	11.1	1.2	3.3	3.8	2.4	S
4 -year educational institutions ${ }^{\text {b }}$	1.0	2.6	1.5	0.9	1.6	0.8	10.2
Science occupations	0.6	4.0	0.5	0.9	2.1	0.6	9.4
Biological, agricultural, or other life scientist	1.3	12.5	1.4	2.7	1.5	1.4	S
Computer and information scientist	0.8	S	1.8	S	6.5	2.4	S
Mathematical scientist	1.7	S	3.0	3.1	3.5	2.3	S
Physical scientist	0.2	3.7	2.3	3.4	4.3	1.2	S
Psychologist	1.0	17.6	3.8	3.9	3.8	0.3	S
Social scientist	1.2	10.6	3.3	1.6	4.5	0.7	S
Engineering occupations	1.7	S	1.5	5.5	5.4	2.1	S
Science and engineering-related occupations	0.9	S	5.5	5.9	7.4	1.8	S
Non-science and engineering occupations	2.6	33.2	8.6	2.6	4.7	2.4	S
Other educational institutions ${ }^{\text {c }}$	1.4	S	4.1	1.5	2.1	1.7	S
Science occupations	0.6	S	6.0	7.1	9.0	1.1	S
Biological, agricultural, or other life scientist	4.0	S	S	S	S	3.8	S
Computer and information scientist	S	S	S	S	S	S	S
Mathematical scientist	7.5	S	S	S	S	9.6	S
Physical scientist	3.7	S	S	S	S	3.5	S
Psychologist	2.7	S	S	S	16.6	3.0	S
Social scientist	1.6	S	S	S	S	2.2	S
Engineering occupations	6.8	S	S	S	S	S	S
Science and engineering-related occupations	1.3	S	1.5	S	S	1.3	S
Non-science and engineering occupations	3.5	S	S	3.5	S	5.2	D
Private-for-profit ${ }^{\text {d }}$	1.0	8.2	0.1	4.0	1.6	0.1	19.7
Science occupations	0.1	8.3	1.8	4.7	2.6	1.3	S
Biological, agricultural, or other life scientist	2.1	S	1.8	16.0	9.1	0.8	S
Computer and information scientist	3.2	S	3.6	6.3	5.7	1.6	S
Mathematical scientist	4.0	S	2.1	S	S	7.7	S
Physical scientist	0.1	S	1.8	8.8	2.3	1.7	S
Psychologist	4.0	S	S	12.8	S	2.8	S
Social scientist	8.5	S	8.9	S	S	9.8	S
Engineering occupations	1.3	S	0.1	5.7	3.4	1.6	S
Science and engineering-related occupations	2.7	S	6.7	18.6	22.4	1.1	S
Non-science and engineering occupations	1.5	12.0	4.5	6.8	7.7	1.5	S
Private non-profit	1.5	S	3.2	5.5	5.8	2.9	S
Science occupations	1.8	S	3.9	7.0	6.4	3.1	S
Biological, agricultural, or other life scientist	4.8	S	11.1	S	S	5.1	S
Computer and information scientist	8.9	S	6.4	S	S	6.7	S
Mathematical scientist	5.5	S	S	S	S	6.7	S
Physical scientist	1.9	S	4.5	S	S	2.8	S
Psychologist	1.1	S	S	S	S	3.8	S
Social scientist	8.8	S	14.2	S	S	10.1	S
Engineering occupations	6.3	S	8.2	S	S	6.5	S
Science and engineering-related occupations	7.9	S	51.5	S	S	10.3	S
Non-science and engineering occupations	7.7	S	9.3	13.9	11.8	5.7	S

TABLE A-72. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by sector of employment, broad occupation, and race/ethnicity: 2006
(Thousands of dollars)

Employment sector and occupation	All full time employed	American Indian/ Alaska Native	Asian	Black	Hispanic	White	Other race/ ethnicity ${ }^{\text {a }}$
Federal government	1.2	4.2	5.7	4.5	3.9	0.2	S
Science occupations	0.8	2.7	4.9	6.3	6.9	0.8	S
Biological, agricultural, or other life scientist	2.4	S	3.5	8.2	5.4	2.1	S
Computer and information scientist	14.4	S	S	S	S	15.6	S
Mathematical scientist	5.6	S	6.9	S	S	3.4	S
Physical scientist	1.9	S	7.4	S	S	2.2	S
Psychologist	3.5	S	S	S	S	3.9	S
Social scientist	1.7	S	11.1	S	S	2.0	S
Engineering occupations	2.9	S	4.9	S	S	3.1	S
Science and engineering-related occupations	4.4	S	17.9	S	S	3.9	S
Non-science and engineering occupations	3.8	S	13.7	S	S	2.8	S
State and local government	1.2	12.8	4.8	6.4	15.5	1.5	S
Science occupations	2.0	S	3.2	6.6	10.2	1.8	S
Biological, agricultural, or other life scientist	1.6	S	S	S	S	3.5	S
Computer and information scientist	5.4	S	6.3	S	S	8.2	S
Mathematical scientist	11.1	S	S	S	S	S	S
Physical scientist	14.5	S	19.6	S	S	16.8	S
Psychologist	1.4	S	S	S	S	1.6	S
Social scientist	4.1	S	S	S	S	5.3	S
Engineering occupations	5.1	S	8.2	S	S	4.3	S
Science and engineering-related occupations	4.1	S	17.2	S	S	4.2	S
Non-science and engineering occupations	3.6	S	16.5	10.5	S	3.6	S
Self-employed ${ }^{\text {e }}$	0.5	S	10.5	10.4	9.0	2.0	S
Science occupations	3.6	S	8.4	S	24.4	2.8	S
Biological, agricultural, or other life scientist	15.8	S	S	S	S	16.0	S
Computer and information scientist	17.1	S	S	S	S	25.1	S
Mathematical scientist	S	S	S	S	S	S	S
Physical scientist	9.4	S	S	S	S	22.5	S
Psychologist	6.0	S	S	S	S	6.5	S
Social scientist	18.9	S	S	S	S	21.2	S
Engineering occupations	7.0	S	S	S	S	11.8	S
Science and engineering-related occupations	15.6	S	S	S	S	25.1	S
Non-science and engineering occupations	10.4	S	6.2	S	S	7.0	S
Other ${ }^{\text {f }}$	20.0	S	34.6	S	S	15.2	S
Science occupations	18.8	S	19.5	S	S	22.1	S
Biological, agricultural, or other life scientist	S	S	S	S	S	S	S
Computer and information scientist	S	S	S	S	S	S	S
Mathematical scientist	S	S	S	S	S	S	S
Physical scientist	S	S	S	S	S	S	S
Psychologist	S	S	S	S	S	S	S
Social scientist	34.0	S	S	S	S	19.9	S
Engineering occupations	S	S	S	S	S	S	S
Science and engineering-related occupations	S	S	S	S	S	S	S
Non-science and engineering occupations	70.2	S	S	S	S	49.0	S

S = suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}} 4$-year educational institutions include 4-year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), and university-affiliated research institutions.
${ }^{c}$ Other educational institution includes 2-year colleges, community colleges, or technical institutes, and other precollege institutions.
${ }^{\text {d }}$ Includes those self-employed in an incorporated business.
${ }^{e}$ Self-employed or business owner in a non-incorporated business.
${ }^{\dagger}$ Includes employers not broken out separately.
NOTE: Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-73. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and primary or secondary work activities: 2006
(Thousands of dollars)

Occupation	All full time employed	Computer applications	Management, sales, administration	Professional services	R\&D ${ }^{\text {a }}$	Teaching	Other
All occupations	0.6	1.5	1.4	1.8	0.1	0.8	1.5
Science occupations	0.8	1.6	1.7	0.2	0.5	1.0	0.9
Biological, agricultural, or other life scientist	1.1	15.3	2.5	3.8	1.6	1.3	2.7
Agricultural/food scientist	3.1	S	3.3	6.6	3.5	S	6.0
Biochemist/biophysicist	4.1	25.3	4.4	6.8	3.5	S	13.8
Biological scientist	3.0	S	4.4	4.9	1.9	S	8.3
Forestry/conservation scientist	3.7	S	22.1	S	3.1	S	S
Medical scientist	1.9	S	3.2	2.2	3.2	S	6.7
Postsecondary teacher, agricultural/other natural sciences	2.1	S	11.2	S	2.5	3.4	S
Postsecondary teacher, biological sciences	0.7	S	11.0	4.7	1.4	1.3	2.6
Other biological/agricultural/life scientist	2.6	S	10.8	10.9	5.5	S	2.6
Computer and information scientist	1.4	1.7	6.4	6.5	2.9	2.0	2.8
Computerlinformation scientist	1.5	1.7	6.6	10.8	1.3	S	1.1
Postsecondary teacher, computer science	0.6	S	9.1	S	5.6	2.1	7.7
Mathematical scientist	1.6	14.6	5.3	11.4	2.3	1.8	4.7
Mathematical scientist	0.5	14.6	2.5	7.9	1.1	S	19.9
Postsecondary teacher, mathematics/statistics	0.6	S	8.5	17.2	4.3	1.8	2.8
Physical scientist	1.0	4.5	1.8	5.9	1.7	0.5	2.3
Chemist, except biochemist	0.5	S	2.1	4.0	1.4	S	4.8
Earth/atmospheric/ocean scientist	2.9	5.8	6.8	13.6	2.8	S	18.5
Physicist/astronomer	0.7	9.0	5.7	15.6	1.0	20.7	4.7
Postsecondary teacher, chemistry	1.6	S	5.9	S	4.9	1.7	3.2
Postsecondary teacher, physics	1.1	S	3.4	S	3.7	2.6	10.2
Postsecondary teacher, other physical sciences	1.6	S	7.0	S	5.0	1.5	S
Other physical scientist	4.2	S	8.5	11.3	4.7	S	S
Psychologist	1.7	S	2.7	1.5	2.8	1.4	2.6
Psychologist	1.0	S	3.3	1.3	2.4	18.2	1.9
Postsecondary teacher, psychology	1.1	S	3.8	2.2	4.1	1.3	3.7
Social scientist	1.4	10.9	3.1	6.6	1.5	1.3	3.0
Economist	5.9	S	7.9	6.0	3.9	S	14.4
Political scientist	4.8	S	12.1	S	5.4	S	S
Postsecondary teacher, economics	3.6	S	7.0	S	6.6	1.1	6.9
Postsecondary teacher, political science	2.1	S	7.6	S	4.5	2.1	3.8
Postsecondary teacher, sociology	1.6	S	6.3	S	4.9	1.3	5.9
Postsecondary teacher, other social sciences	1.7	S	5.4	5.5	3.2	3.1	4.6
Sociologist/anthropologist	1.7	S	9.0	14.5	2.7	S	S
Other social scientist	2.8	S	3.8	7.3	3.4	S	12.4
Engineering occupations	1.0	2.1	2.2	5.2	0.8	2.1	1.6
Aerospace/aeronautical/astronautical engineer	0.4	4.0	5.4	S	4.6	S	13.6
Chemical engineer	2.7	2.6	5.3	S	0.9	S	7.9
Civil/architectural/sanitary engineer	4.5	S	10.2	9.5	5.1	S	8.9
Electrical engineer	1.9	6.1	4.1	19.4	3.5	S	4.0
Materials/metallurgical engineer	10.0	S	17.6	S	11.9	S	S
Mechanical engineer	1.7	S	6.3	19.0	2.7	S	4.6
Postsecondary teacher, engineering	1.3	S	7.8	S	1.5	1.9	4.1
Other engineer	1.3	8.6	2.1	6.0	2.1	S	2.4
Science and engineering-related occupations	1.5	3.6	2.0	2.6	2.2	0.5	5.2
Health occupation, except postsecondary teacher	3.5	S	5.4	7.6	7.3	9.5	5.0
Postsecondary teacher, health and related sciences	2.6	S	5.4	5.4	3.5	1.1	5.2
SEH manager	2.9	10.2	1.9	8.4	4.1	S	15.7

TABLE A-73. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by occupation and primary or secondary work activities: 2006
(Thousands of dollars)

Occupation	All full time employed	Computer applications	Management, sales, administration	Professional services	$\mathrm{R} \& \mathrm{D}^{\text {a }}$	Teaching	Other
SEH precollege teacher	1.1	S	S	S	S	1.1	1.8
SEH technician/technologist	6.8	5.3	33.5	S	13.4	S	23.5
Other SEH-related occupation	7.0	S	S	S	S	S	S
Non-science and engineering occupations	0.4	11.2	3.3	3.1	4.0	2.7	4.4
Arts/humanities-related occupation	2.4	S	9.2	4.9	16.9	S	9.3
Management-related occupation	2.3	19.3	4.1	4.4	2.3	12.4	8.3
Non-SEH manager	2.4	33.5	2.1	9.2	4.9	S	10.1
Non-SEH postsecondary teacher	2.4	S	6.7	12.1	5.7	1.1	6.2
Non-SEH precollege/other teacher	4.9	S	14.8	S	S	7.6	S
Sales/marketing occupation	5.8	S	5.3	25.5	3.1	S	6.4
Social service-related occupation	4.0	S	6.7	3.8	S	12.3	10.9
Other non-SEH occupation	4.7	S	5.2	10.0	17.8	S	7.8

$\mathrm{S}=$ suppressed for reliability or confidentiality.
SEH = science, engineering, and health.
${ }^{a}$ R\&D includes applied or basic research, design, and development.
NOTES: If respondent reported more than one category of activity as the primary or secondary work activity, respondent's salary appears in both categories. Median annual salaries are for principal job.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-74. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by employer location and broad occupation: 2006

Employer location	All full time employed	Science occupations							Engineering occupations	SEH-related occupations	Non-SEH occupations
		All science occupations	Biological, agricultural, or other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
All locations	0.6	0.8	1.1	1.4	1.6	1.0	1.7	1.4	1.0	1.5	0.4
New England	1.7	1.4	3.1	3.1	6.5	2.9	3.7	2.6	4.2	8.0	5.3
Connecticut	2.7	2.5	11.3	7.0	12.2	7.9	7.2	5.7	4.6	27.4	9.0
Maine	2.8	3.9	7.6	S	S	S	1.6	11.9	11.0	S	16.3
Massachusetts	0.9	2.4	6.6	4.5	7.0	3.0	2.0	3.6	5.1	12.2	9.6
New Hampshire	5.7	4.2	9.9	S	S	6.1	2.7	11.8	7.3	S	24.1
Rhode Island	5.8	6.9	13.1	S	S	26.4	11.3	10.4	4.4	4.5	6.7
Vermont	2.0	8.1	1.0	S	S	S	S	8.2	23.1	S	S
Middle Atlantic	0.1	1.5	1.6	2.4	5.5	2.5	1.7	1.5	2.1	5.6	3.1
New Jersey	0.1	2.7	3.7	7.5	13.1	4.6	7.4	11.8	2.0	19.2	6.5
New York	0.2	1.9	3.4	5.2	9.8	3.7	1.4	4.3	3.0	4.5	4.5
Pennsylvania	1.8	2.6	2.2	9.5	9.0	4.2	4.4	3.9	4.2	9.0	6.9
East North Central	1.2	1.8	2.5	3.4	4.5	2.9	1.0	1.8	1.5	5.1	2.5
Illinois	1.8	1.1	5.6	4.1	9.7	2.4	5.7	4.6	5.2	7.9	3.9
Indiana	1.6	3.4	5.4	2.5	10.1	5.2	6.8	4.4	3.7	13.6	8.2
Michigan	2.6	1.7	2.0	3.1	5.0	6.0	1.5	6.7	1.4	6.8	7.2
Ohio	0.9	2.0	6.2	4.7	5.6	6.3	4.1	3.6	4.2	6.4	6.5
Wisconsin	3.0	2.6	4.3	6.0	4.5	4.6	4.0	5.1	5.6	12.1	7.9
West North Central	1.9	1.9	1.9	6.1	5.6	2.7	1.6	1.8	3.1	2.6	8.1
lowa	2.9	4.3	5.1	S	7.1	5.1	5.6	5.5	3.7	10.1	27.8
Kansas	4.7	3.0	5.8	S	S	3.9	10.2	10.9	8.3	9.4	10.9
Minnesota	3.1	1.7	4.8	12.0	18.1	3.1	3.6	3.3	2.5	6.1	6.5
Missouri	2.8	1.8	5.6	S	9.8	5.2	4.6	7.5	5.5	6.6	8.1
Nebraska	3.8	6.9	5.4	S	S	S	S	S	S	S	S
North Dakota	4.1	4.0	11.7	S	S	3.8	7.2	8.8	S	10.5	7.2
South Dakota	5.2	5.1	7.1	S	S	S	6.6	S	S	S	S
South Atlantic	1.6	0.1	2.5	1.8	5.9	3.7	1.5	2.9	2.6	2.1	4.0
Delaware	2.5	6.0	4.6	17.2	S	11.7	4.8	S	10.2	S	10.4
District of Columbia	2.6	1.4	11.7	3.3	20.8	14.9	9.2	3.4	8.3	7.4	5.4
Florida	1.9	2.4	3.4	6.0	5.2	4.8	4.8	1.7	3.0	5.8	14.0
Georgia	2.4	2.6	3.8	2.4	7.1	3.6	13.3	3.7	4.4	13.2	10.4
Maryland	1.8	3.7	2.6	2.2	11.9	2.6	2.3	5.2	2.2	6.0	7.0
North Carolina	2.6	1.6	6.4	8.6	22.5	6.0	3.5	4.5	1.6	7.5	8.5
South Carolina	3.7	3.6	6.4	S	15.2	7.4	4.9	3.5	5.3	5.2	6.2
Virginia	2.0	2.4	7.3	10.5	4.9	6.4	7.1	3.9	5.6	4.6	6.7
West Virginia	5.6	2.6	6.8	S	S	12.3	S	20.2	19.4	37.3	S

TABLE A-74. Standard errors for median annual salaries of full time employed doctoral scientists and engineers, by employer location and broad occupation: 2006

Employer location	Science occupations								Engineering occupations	SEH-related occupations	Non-SEH occupations
	All full time employed	All science occupations	Biological, agricultural, or other life scientist	Computer and information scientist	Mathematical scientist	Physical scientist	Psychologist	Social scientist			
East South Central	2.5	1.1	4.4	10.0	9.0	2.6	6.4	6.8	4.5	2.7	4.8
Alabama	3.9	2.3	3.9	S	S	7.7	9.4	9.4	4.7	11.8	15.9
Kentucky	3.5	5.6	4.0	S	18.8	9.3	11.8	7.6	11.3	8.9	14.6
Missssisipi	2.6	2.9	4.9	S	S	5.4	S	S	8.1	9.6	23.3
Tennessee	3.5	4.1	6.9	20.4	11.2	3.7	4.9	15.6	3.1	15.4	11.9
West South Central	1.8	1.6	2.7	5.5	5.0	5.4	4.5	3.4	2.9	4.1	2.7
Arkansas	3.3	5.7	7.5	S	S	8.3	S	11.7	25.1	6.9	11.2
Louisiana	3.3	4.0	8.1	12.5	S	13.5	7.1	9.9	13.6	15.8	28.9
Oklahoma	2.7	4.8	4.7	S	S	8.0	11.1	10.8	6.4	11.3	21.4
Texas	2.1	3.6	2.7	3.4	6.3	4.9	5.5	4.2	1.4	4.8	2.4
Mountain	1.9	1.3	2.5	4.2	2.8	4.9	1.8	2.7	2.7	5.7	4.5
Arizona	3.4	3.4	6.4	5.8	4.6	8.4	10.7	4.4	5.6	6.3	9.1
Colorado	2.5	2.3	8.0	7.7	2.9	8.6	3.9	5.5	4.7	9.9	8.9
Idaho	6.3	3.1	4.9	S	S	4.3	5.3	S	8.6	15.3	22.5
Montana	1.3	1.2	1.5	S	S	6.6	S	S	S	S	S
New Mexico	2.1	6.4	7.6	15.6	16.4	2.8	11.2	5.7	3.8	9.8	6.6
Nevada	5.3	5.8	4.0	S	S	8.4	15.5	18.3	18.5	17.3	42.0
Utah	1.7	2.0	2.6	11.6	7.5	6.3	1.4	4.2	9.2	14.5	8.8
Wyoming	8.9	3.5	S	S	S	S	S	S	S	S	S
Pacific	0.8	0.5	2.3	3.0	2.7	3.1	1.5	2.7	1.6	4.1	6.7
Alaska	6.9	6.0	13.3	S	S	S	S	S	S	S	S
California	0.1	0.3	1.4	3.6	5.3	2.4	4.3	3.6	1.7	5.6	2.9
Hawaii	2.9	3.3	9.3	S	S	8.3	S	3.1	S	S	11.3
Oregon	2.8	3.4	6.8	4.5	13.2	9.2	5.8	3.4	2.9	11.0	9.3
Washington	2.5	2.4	2.9	6.3	6.1	7.2	3.2	2.6	2.7	12.0	4.7
Puerto Rico	2.8	1.5	4.5	S	S	3.5	S	S	S	S	3.4
Other U.S. territories and other areas	9.7	11.8	S	S	S	S	S	S	S	S	10.9

SEH = science, engineering, and health.
NOTES: Because survey sample design does not include geography, reliability of estimates in some states may be poor due to small sample size. Median annual salaries are for principal job.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-75. Standard errors for doctoral scientists and engineers employed in postdocs, by field of doctorate: 2006

Field	Number	Percent
Total in postdoc ${ }^{\text {a }}$	770	-
Science	700	0.9
Biological, agricultural, and environmental life sciences	500	1.2
Agricultural/food sciences	100	0.3
Biochemistry/biophysics	190	0.6
Cell/molecular biology	220	0.7
Environmental life sciences	90	0.3
Microbiology	170	0.5
Zoology	90	0.3
Other biological sciences	410	1.2
Computer and information sciences	70	0.2
Mathematics and statistics	140	0.5
Physical sciences	370	1.0
Astronomylastrophysics	110	0.4
Chemistry, except biochemistry	260	0.8
Earth/atmospheric/ocean sciences	120	0.4
Physics	190	0.6
Psychology	250	0.8
Social sciences	140	0.4
Economics	60	0.2
Political sciences	90	0.3
Sociology	400	0.1
Other social sciences	90	0.3
Engineering	270	0.8
Aerospace/aeronautical/astronautical engineering	80	0.2
Chemical engineering	130	0.4
Civil engineering	70	0.2
Electrical/computer engineering	120	0.4
Materials/metallurgical engineering	120	0.4
Mechanical engineering	120	0.4
Other engineering	160	0.5
Health	130	0.4

- = no value; standard errors are not calculated for proportions of 100%.
${ }^{a}$ A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006).

NOTE: Standard errors for numbers are rounded up to nearest 10.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-76. Standard errors for number of postdocs ever held by doctoral scientists and engineers, by years since doctorate and broad field of doctorate: 2006

Years since doctorate and number of postdocs		Science							Engineering	Health
	All fields	All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Total population	1,320	1,120	520	250	310	590	400	500	610	290
None	2,130	1,880	1,010	290	420	960	810	620	850	400
1	2,050	1,810	1,150	180	340	950	800	420	700	370
2	1,080	1,060	740	60	220	530	380	220	270	140
3 or more	560	530	430	S	120	250	130	140	130	70
5 years or less	740	680	400	140	180	330	270	310	400	210
None	870	810	400	160	210	320	370	350	470	220
1	850	780	530	100	160	340	380	200	400	180
2	460	420	280	50	90	210	140	90	130	60
3 or more	140	120	100	S	40	50	S	40	70	S
6-10 years	950	800	530	160	200	350	340	280	410	220
None	890	770	420	180	220	380	370	310	390	220
1	840	800	530	90	140	360	340	170	290	150
2	450	430	360	S	110	200	130	60	140	60
3 or more	180	180	140	S	40	90	S	40	40	S
11-15 years	920	760	460	150	210	350	350	310	370	200
None	990	810	370	170	210	370	380	300	390	200
1	720	710	470	100	130	360	320	160	270	140
2	500	470	370	40	120	240	170	90	140	80
3 or more	240	230	190	S	60	130	S	S	50	S
16-20 years	840	720	380	120	210	360	320	280	340	180
None	880	770	380	130	190	340	380	310	370	180
1	610	550	400	40	130	320	270	130	210	110
2	340	330	240	S	70	200	130	60	80	60
3 or more	230	220	160	S	S	110	50	60	S	S
21-25 years	830	760	410	90	190	330	370	330	330	170
None	790	750	380	90	190	350	370	330	310	160
1	620	590	390	50	90	310	280	180	170	120
2	360	360	270	S	50	140	140	70	S	40
3 or more	190	190	150	S	60	90	50	S	40	S
More than 25 years	1,000	830	470	70	260	470	300	370	350	160
None	1,470	1,290	590	60	300	670	400	410	480	190
1	990	900	580	S	210	540	370	240	360	140
2	510	510	320	S	100	310	170	130	110	50
3 or more	370	360	240	S	40	190	110	100	80	50

S = suppressed for reliability or confidentiality.
NOTES: A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006). Years since doctorate were calculated as academic years since doctorate attainment. Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Number of postdocs and primary reason for holding postdoc	All fields	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Total ever holding postdoc	2,030	1,820	1,060	200	320	1,000	800	480	690	380
Reason for first postdoc										
Additional training in field	1,470	1,320	830	130	240	680	670	280	420	280
Training out of field	960	900	590	50	140	520	300	210	280	130
Work with specific person or place	1,080	980	730	120	190	520	350	250	390	200
Other employment not available	880	800	470	90	150	480	230	210	450	110
Postdoc generally expected for career in field	1,050	980	730	60	210	470	490	140	220	140
Other reason	430	420	280	50	90	220	120	180	170	40
Total with only one postdoc	2,050	1,810	1,150	180	340	950	800	420	700	370
Reason for first postdoc										
Additional training in field	1,300	1,170	740	110	200	630	590	240	410	270
Training out of field	750	690	490	50	140	380	260	180	260	120
Work with specific person or place	1,070	930	600	110	180	470	350	230	390	190
Other employment not available	660	580	340	80	110	350	200	190	430	110
Postdoc generally expected for career in field	990	940	670	60	180	480	480	120	200	130
Other reason	320	310	190	40	60	180	110	130	170	30
Total with more than one postdoc	1,270	1,250	910	60	240	570	420	260	300	150
Reason for first postdoc										
Additional training in field	720	670	490	50	170	290	280	130	140	90
Training out of field	580	530	380	S	70	290	120	130	130	60
Work with specific person or place	580	550	420	40	100	290	150	110	140	80
Other employment not available	540	500	330	S	90	290	130	110	150	30
Postdoc generally expected for career in field	390	390	330	S	100	250	160	70	90	40
Other reason	300	300	200	S	70	140	70	110	50	S
Reason for second postdoc										
Additional training in field	910	870	610	40	180	400	290	130	180	100
Training out of field	490	480	370	S	60	240	120	120	100	90
Work with specific person or place	530	510	420	40	100	240	130	130	130	70
Other employment not available	420	390	250	S	80	220	90	110	130	S
Postdoc generally expected for career in field	600	590	390	S	100	280	160	70	110	40
Other reason	200	200	150	30	30	110	50	90	70	S

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006). Standard errors are rounded up to nearest 10 .

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-78. Standard errors for postdoc status of doctoral scientists and engineers, by years since doctorate and broad field of doctorate: 2006

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006). Years since doctorate were calculated as academic years since doctorate attainment. Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

TABLE A-79. Standard errors for doctoral scientists and engineers on postdoctoral appointments, by selected demographic characteristics and broad field of doctorate: 2006

Characteristic	All fields	Science							Engineering	Health
		$\begin{array}{r} \text { All } \\ \text { sciences } \end{array}$	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
On postdoc in April 2006	770	700	500	70	140	370	250	140	270	130
Years since doctorate										
5 or less	730	650	470	70	140	340	250	130	270	120
6-10	270	250	210	S	S	100	40	50	50	S
11-15	110	100	80	S	S	S	S	S	50	S
More than 15	60	50	40	S	S	S	S	S	S	S
Gender										
Male	540	480	330	60	120	300	150	100	260	80
Female	470	420	310	S	60	160	180	110	130	110
Race/ethnicity										
American Indian/Alaska Native	50	50	S	S	S	S	S	S	S	S
Asian	430	370	290	50	90	210	60	60	200	80
Black	110	100	70	S	S	50	40	50	30	30
Hispanic	130	120	90	S	S	40	40	30	50	S
White	560	540	370	40	110	270	240	120	180	110
Other race/ethnicity ${ }^{\text {a }}$	30	30	30	S	S	S	S	S	S	S
Age										
Under 35	580	530	410	70	120	280	200	90	230	90
35-44	480	460	360	S	70	220	120	110	170	100
45-75	220	200	150	S	40	60	80	70	60	60
Citizenship										
U.S. citizen	580	560	400	50	100	250	240	120	170	110
Non-U.S. citizen	470	420	300	50	100	250	60	70	230	90
Employment sector										
Business/industry	310	290	220	40	50	170	90	50	90	70
Educational institution	680	620	470	50	130	290	230	140	270	110
Government	250	210	170	S	S	120	60	30	80	70
Employment benefits ${ }^{\text {b }}$										
Received health benefits	740	670	480	70	140	350	230	140	270	120
Received retirement benefits	460	470	340	60	130	280	160	100	220	90

$\mathrm{S}=$ suppressed for reliability or confidentiality.
${ }^{\text {a }}$ Includes Native Hawaiians/Other Pacific Islanders and non-Hispanic respondents reporting more than one race.
${ }^{\mathrm{b}}$ Individuals could receive both health and retirement benefits.
NOTES: A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006). Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Extent and type of benefit	All fields	Science							Engineering	Health
		sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Total	770	700	500	70	140	370	250	140	270	130
Increase subject matter knowledge or expertise	770	700	500	70	140	370	250	140	270	130
Great extent	700	650	460	40	130	320	220	110	250	120
Somewhat	430	370	310	60	70	180	160	90	170	80
Not at all	100	100	50	S	S	70	S	S	S	S
Improve specific research skills or techniques	770	700	500	70	140	370	250	140	270	130
Great extent	660	590	420	50	120	300	190	100	250	120
Somewhat	530	490	340	50	90	260	170	110	180	80
Not at all	170	160	110	S	50	70	60	50	70	40
Increase contacts with colleagues in field	770	700	500	70	140	370	250	140	270	130
Great extent	660	610	420	50	100	240	190	110	190	90
Somewhat	520	470	360	50	110	270	170	90	210	80
Not at all	230	220	180	S	50	100	S	50	90	60
Provide opportunities to use specialized equipment	770	700	500	70	140	370	250	140	270	130
Great extent	530	470	360	50	50	250	150	70	190	90
Somewhat	530	500	380	50	90	240	150	60	180	70
Not at all	400	350	200	S	130	160	150	110	170	80
Improve problem-solving skills	770	700	500	70	140	370	250	140	270	130
Great extent	540	490	340	40	80	240	160	80	190	80
Somewhat	580	530	400	60	120	240	180	100	230	100
Not at all	270	250	170	S	50	140	40	70	60	70
Enhance your career opportunities	770	700	500	70	140	370	250	140	270	130
Great extent	610	590	430	40	110	270	190	100	210	110
Somewhat	440	430	350	50	120	270	160	100	200	50
Not at all	250	220	170	S	S	110	40	40	90	40
Help in other areas	770	700	500	70	140	370	250	140	270	130
Great extent	310	290	250	S	70	140	100	70	120	80
Somewhat	520	470	380	40	90	240	160	100	200	80
Not at all	580	520	380	50	110	240	170	100	200	100

= suppressed for reliability or confidentiality.
NOTES: A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006). Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Academic position held	All fields	Science							Engineering	Health
		All sciences	Biological, agricultural, and environmental life sciences	Computer and information sciences	Mathematics and statistics	Physical sciences	Psychology	Social sciences		
Total employed in educational institutions	2,000	1,960	1,080	310	480	800	720	820	810	470
President, provost, or chancellor	290	280	140	50	90	90	130	190	70	60
Dean, department head, or chair	960	820	410	110	210	280	340	430	290	250
Research faculty, scientist, associate, or fellow	1,490	1,280	960	220	360	620	540	570	530	380
Teaching faculty	1,760	1,700	940	290	510	660	670	780	590	410
Adjunct faculty	600	580	370	50	130	230	240	270	190	150
Postdoc (e.g., postdoctoral fellow or associate)	680	620	470	50	130	290	230	140	270	110
Research assistant	180	160	130	S	S	90	70	60	70	S
Teaching assistant	80	70	60	S	S	S	S	S	S	S
Other position	560	560	340	100	100	160	280	220	150	130

$\mathrm{S}=$ suppressed for reliability or confidentiality.
NOTES: A postdoc is a temporary position awarded in academe, industry, non-profit organizations, or government primarily for gaining additional education and training in research. Postdoc status is reported for the principal job as of the survey reference date (1 April 2006). Standard errors are rounded up to nearest 10.

SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Appendix B. Codes Used in Degree and Occupation Fields

Table B-1 provides a comparison of the science, engineering, and health doctoral fields of study used in the data tables to those fields in both the SDR questionnaire and the Survey of Earned Doctorates (SED) questionnaire. For more information on the SED, please visit http://www.nsf.gov/statistics/srvydoctorates/.

Table B-2 provides a crosswalk between the major, minor, and detailed occupational categories used for reporting occupational data in the SDR data tables. The detailed occupation is reported by the respondents for their principal job held during the survey reference week of 1 April 2006-or last job held, if not employed during the reference week.

Table Table Name

B-1 Comparison of science, engineering, and health doctoral fields of study in SDR data tables to fields coded in the SDR and SED
B-2 Crosswalk of occupations used in the SDR data tables

TABLE B-1. Comparison of science, engineering, and health doctoral fields of study in SDR data tables to fields coded in the SDR and SED

SDR detailed statistical tables		SDR field of study code	SED field of study code	
Major field	Minor field			
Biological, agricultural, and environmental life sciences	Agricultural/food sciences	605 Animal sciences	005 00 010 012 01 019	Animal breeding/genetics Animal husbandry ${ }^{1}$ Animal nutrition Dairy science Poultry science Animal sciences, other
		606 Food sciences/technology	04	Food distribution ${ }^{1}$ Food engineering Food sciences ${ }^{1}$ Food sciences, other
		607 Plant sciences	050 025 030 032 039	Agronomy/crop science Horticulture science Plant breeding/genetics Plant pathology Plant protection/pest management ${ }^{1}$ Plant sciences, other
		608 Other agricultural sciences	099	Agricultural sciences, general Soil chemistry/microbiology Soil sciences ${ }^{1}$ Agricultural sciences, other Soil sciences, other
	Biochemistry/biophysics	631 Biochemistry/biophysics	105	Biochemistry Biophysics
	Cell/molecular biology	634 Cell/molecular biology	13	Cell biology Molecular biology
	Environmental life sciences	680 Environmental science or studies	05	Environmental science Environmental science Fish and wildlife science ${ }^{1}$ Fisheries science/management
		681 Forestry sciences	079	Conservation/renewable natural resources Forest biology Forest engineering Forest management Forestry science ${ }^{1}$ Wildlife ${ }^{1}$ Wildlife/range management Wood science and pulp/paper technology Forestry and related sciences, other
	Microbiology	637 Microbiological sciences/immunology	15	Bacteriology Microbiology Microbiology/bacteriology ${ }^{1}$
	Zoology	641 Zoology, general	18	Entomology Zoology, other
	Other biological sciences	632 Biology, general	198	Biological sciences, general
		633 Botany	12	Plant pathology Plant physiology Botany, other
		635 Ecology	139	Ecology
		636 Genetics, animal/plant	17 170 115	Genetics ${ }^{1}$ Genetics, human/animal Plant genetics
		638 Nutritional sciences	16	Nutritional sciences
		639 Pharmacology, human/animal	18	Pharmacology, human/animal

TABLE B-1. Comparison of science, engineering, and health doctoral fields of study in SDR data tables to fields coded in the SDR and SED

SDR detailed S	statistical tables		
Major field	Minor field	SDR field of study code	SED field of study code
Biological, agricultural, and environmental life sciences, continued	Other biological sciences, continued	640 Physiology/pathology, human/animal	186 Animal/plant physiology ${ }^{1}$ 175 Pathology, human/animal 185 Physiology, human/animal
		642 Other biological sciences	130 Anatomy
			151 Biological immunology
			103 Biomedical sciences
			133 Biometrics/biostatistics
			107 Biotechnology research
			140 Hydrobiology ${ }^{1}$
			142 Developmental biology/embryology
			145 Endocrinology
			160 Neuroscience
			166 Parasitology
			169 Toxicology
			199 Biological sciences, other
Computer and information sciences	Computer and information sciences	D67 Computer/information sciences	400 Computer science
			410 Information science/systems
			419 Computer/information sciences, other
Mathematics and statistics	Mathematics and statistics	841 Applied mathematics	420 Applied mathematics
		842 Mathematics, general	498 Mathematics, general
		843 Operations research	363 Operations research
			465 Operations research
			930 Operations research
		844 Statistics	450 Mathematical statistics
			690 Statistics
		845 Other mathematics	425 Algebra
			430 Analysis/functional analysis
			460 Computing theory/practice
			435 Geometry
			440 Logic
			445 Number theory
			455 Topology
			499 Mathematics, other
Physical sciences	Astronomy/astrophysics	871 Astronomy/astrophysics	500 Astronomy
			506 Astronomy/astrophysics ${ }^{1}$
			505 Astrophysics
	Chemistry, except biochemistry	873 Chemistry, except biochemistry	520 Analytical
			521 Agricultural/food
			538 Chemistry, general
			522 Inorganic
			528 Medicinal/pharmaceutical
			524 Nuclear
			526 Organic
			530 Physical
			532 Polymer
			534 Theoretical
			539 Chemistry, other
	Earth/atmospheric/ocean sciences	872 Atmospheric sciences/meteorology	510 Atmospheric physics/chemistry
			512 Atmospheric dynamics
			518 Atmospheric sciences/meteorology, general
			514 Meteorology
			519 Atmospheric sciences/meteorology, other

TABLE B-1. Comparison of science, engineering, and health doctoral fields of study in SDR data tables to fields coded in the SDR and SED

SDR detailed statistical tables		SDR field of study code	SED field of study code	
Major field	Minor field			
Physical sciences, continued	Earth/atmospheric/ocean sciences, continued	875 Geology	554 55 548 549 540 552 550 547	Applied geology Applied geology/geological engineering Mineralogy, petrology Mineralogy/petrology/geological chemistry ${ }^{1}$ Geology Geomorphology/glacial geology Stratigraphy/sedimentation
		876 Geological sciences, other 876 Geological sciences, other, continued	54	Fuel technology/petroleum engineering ${ }^{1}$ Geochemistry Geological and related sciences, general Geological and related sciences, other Geophysics, seismology Geophysics, solid earth ${ }^{1}$ Paleontology
		877 Oceanography	59	Oceanography
		D87 Earth sciences/other physical sciences	58	Hydrology/water resources Marine sciences Physical sciences, other
	Physics	878 Physics, except biophysics	579	Acoustics Applied ${ }^{1}$ Biophysics ${ }^{1}$ Chemical and atomic/molecular Electromagnetism ${ }^{1}$ Electron physics ${ }^{1}$ Elementary particle Fluids Mechanics ${ }^{1}$ Nuclear Optics Physics, general Plasma/high-temperature Polymer Solid state/low-temperature Theoretical ${ }^{1}$ Thermal ${ }^{1}$ Physics, other
Psychology	Psychology	891 Clinical psychology	600	Clinical
		892 Counseling psychology	60	Counseling
		704 Educational psychology	61 822	Educational Educational psychology
		893 Experimental psychology	61	Experimental
		894 General psychology	64	Psychology, general
		895 Industrial/organizational psychology	62	Industrial/organizational
		896 Social psychology	63	Social
		897 Other psychology	162	Cognitive psychology/psycholinguistics Comparative Developmental/child Experimental/comparative psychology/physiology ${ }^{1}$ Family/marriage counseling Human engineering ${ }^{1}$ Human/individual and family development Personality

TABLE B-1. Comparison of science, engineering, and health doctoral fields of study in SDR data tables to fields coded in the SDR and SED

SDR detailed statistical tables		SDR field of study code	SED field of study code	
Major field	Minor field			
Psychology, continued	Psychology, continued	897 Other psychology, continued	649	Physiological/psychobiology Psychometrics Quantitative School Psychology, other
Social sciences	Economics	601 Agriculture, economics	002	Agricultural business/management Agricultural economics
		923 Economics	668	Econometrics Economics
	Political sciences	927 International relations	674	International relations/affairs
		928 Political science/government	678 679	Political science/government Political science/public administration ${ }^{1}$
		902 Public policy studies	682	Public policy analysis
	Sociology	929 Sociology	686	Sociology
	Other social sciences	921 Anthropology/archeology	650 773	Anthropology Archeology
		620 Area/ethnic studies	770	American studies
		620 Area/ethnic studies, continued	652	Area studies
		922 Criminology	658	Criminology
		924 Geography	670	Geography
		925 History of science	710	History/philosophy of science/technology
		771 Linguistics	729	Linguistics
		930 Other social sciences	662 698 694 699	Demography/population studies Social sciences, general Urban affairs/studies Social sciences, other
Engineering	Aerospace/aeronautical/ astronautical engineering	721 Aerospace, aeronautical, astronautical engineering	300	Aerospace/aeronautical/astronautical
	Chemical engineering	725 Chemical engineering	312	Chemical
	Civil engineering	726 Civil engineering	315	Civil
	Electrical/computer engineering	727 Computer/systems engineering	321 372	Computer Systems
		728 Electrical/electronics/communications engineering	318 322 323 324	Communications Electrical ${ }^{1}$ Electronics ${ }^{1}$ Electrical/electronics
	Materials/metallurgical engineering	734 Materials engineering, including ceramics/textiles	309 342 369 375	Ceramic science Materials science Polymer/plastics Textile ${ }^{1}$
		736 Metallurgical engineering	348	Metallurgical
	Mechanical engineering	735 Mechanical engineering	345	Mechanical
	Other engineering	722 Agricultural engineering	303	Agricultural
		724 Bioengineering/biomedical engineering	306	Bioengineering/biomedical
		$729 \begin{array}{l}\text { Engineering sciences/mechanics/ } \\ \text { physics }\end{array}$	327 330 333	Engineering mechanics Engineering physics Engineering science
		730 Environmental engineering	336	Environmental health engineering
		731 Engineering, general	398	Engineering, general
		733 Industrial/manufacturing engineering	339	Industrial/manufacturing
		737 Mining/minerals engineering	351	Mining/mineral
		738 Naval architecture/marine engineering	354	Naval architecture/marine engineering ${ }^{1}$
		739 Nuclear engineering	357	Nuclear

TABLE B-1. Comparison of science, engineering, and health doctoral fields of study in SDR data tables to fields coded in the SDR and SED

SDR detailed statistical tables		SDR field of study code	SED field of study code	
Major field	Minor field			
Engineering, continued	Other engineering, continued	740 Petroleum engineering	366	Petroleum
		D74 Other engineering	360	
			399	Engineering, other
Health	Health	781 Audio/speech pathology	200	Speech/language pathology, audiology
		782 Health services administration	212	Health systems/services administration
		786 Medicine (e.g., dentistry, optometry,	205	Dentistry ${ }^{1}$
		osteopathic, podiatry, veterinary)	225	Medical/surgery ${ }^{1}$
			235	Optometry/ophthalmology ${ }^{1}$
			250	Veterinary medicine
		787 Nursing (4 years or longer program)	230	Nursing
		788 Pharmacy	240	Pharmacy
		789 Physical therapy/other rehabilitation/therapeutic services	245	Rehabilitation/therapeutic services
		790 Public health (including environmental	210	Environmental health
		health/epidemiology)	211	Environmental toxicology ${ }^{1}$
			220	Epidemiology
			215	Public health
			219	Public health/epidemiology ${ }^{1}$
		791 Other health/medical sciences	222	Exercise physiology/science, kinesiology
			298	Health sciences, general
			224	Hospital administration ${ }^{1}$
			299	Health sciences, other

SED = Survey of Earned Doctorates; SDR = Survey of Doctorate Recipients.
${ }^{1}$ Doctoral field dropped or replaced; no longer used in the SED as of 2005.
NOTES: The SDR is a sample survey; the SED is a universe survey. When sampling from the Doctorate Records File (DRF) for the SDR, it is not possible to sample all individual SED fields separately or to analyze SDR data by all individual SED field of study codes. SDR field of study codes provided here represent the greatest level of analytic detail that sampling of the SDR allows when field is the only variable used for analysis. SED field of study codes are presented as a reference. Major/minor categories used in detailed statistical tables are a further aggregation of SDR field of study codes, necessary when SDR field of study is cross-tabulated with other data from the SDR. For further information on SDR sampling, see the 2006 SDR methodology report (available upon request).

SOURCE: National Science Foundation/Division of Science Resources Statistics, 2006 Survey of Doctorate Recipients.

TABLE B-2. Crosswalk of occupations used in the SDR data tables

Science and engineering classification	Major occupational category	Minor occupational category	Detailed occupational category
Science occupations	Biological, agricultural or other life scientists	Agricultural/food scientist	021 Agricultural and food scientists
		Biochemist/biophysicist	022 Biochemists and biophysicists
		Biological scientists	023 Biological scientists
		Forestry/conservation scientist	024 Forestry and conservation scientists
		Medical scientist	025 Medical scientists (excluding practitioners)
		Postsecondary teacher, agricultural/other natural sciences	271 Postsecondary teachers, agriculture
		Postsecondary teacher, agricultural/other natural sciences	297 Postsecondary teachers, other natural sciences
		Postsecondary teachers, biological sciences	273 Postsecondary teachers, biological sciences
		Other biological/agricultural/life scientist	027 Other biological and life scientists
	Computer and information scientists	Computer/information scientist	051 Computer and information scientists, research 053 Computer support specialists 054 Computer systems analysts 055 Database administrators 056 Network and computer systems administrators 057 Network systems and data communications analysts 058 Other computer and information science occupations 088 Computer engineers, software
		Postsecondary teacher, computer science	276 Postsecondary teachers, computer science
	Mathematical scientists	Mathematical scientist	172 Mathematicians 173 Operations research analysts, including modeling 174 Statisticians 176 Other mathematical scientists
		Postsecondary teacher, math/statistics	286 Postsecondary teachers, mathematics and statistics
	Physical scientists	Chemists, except biochemists	193 Chemists, except biochemists
		Earth/atmospheric/ocean scientist	192 Atmospheric and space scientists 194 Geologists, including earth scientists 195 Oceanographers
		Physicist/astronomer	191 Astronomers 196 Physicists, except biophysicists
		Postsecondary teachers, chemistry	275 Postsecondary teachers, chemistry
		Postsecondary teachers, physics	289 Postsecondary teachers, physics
		Postsecondary teacher, other physical sciences	277 Postsecondary teachers, earth, environmental, and marine sciences
		Other physical scientist	198 Other physical scientists
	Psychologists	Psychologist	236 Psychologists, including clinical
		Postsecondary teachers, psychology	291 Postsecondary teachers, psychology
	Social scientists	Economists	232 Economists
		Political scientists	235 Political scientists
		Postsecondary teachers, economics	278 Postsecondary teachers, economics
		Postsecondary teachers, political science	290 Postsecondary teachers, political science
		Postsecondary teachers, sociology	293 Postsecondary teachers, sociology
		Postsecondary teachers, other social sciences	298 Postsecondary teachers, other social sciences
		Sociologist/anthropologist	231 Anthropologists
			237 Sociologists
		Other social scientists	238 Other social scientists
Engineering occupations	Engineering occupations	Aerospace/aeronautical/astronautical engineer	082 Aeronautical, aerospace and astronautical engineers
		Chemical engineers	085 Chemical engineers
		Civil/architectural/sanitary engineer	086 Civil engineers, including architectural and sanitary
		Electrical engineer	087 Computer engineers, hardware
			089 Electrical and electronics engineers

TABLE B-2. Crosswalk of occupations used in the SDR data tables

Science and engineering classification	Major occupational category	Minor occupational category	Detailed occupational category
Engineering occupations, continued	Engineering occupations, continued	Materials/metallurgical engineer	091 Industrial engineers
		Mechanical engineers	094 Mechanical engineers
		Postsecondary teachers, engineering	280 Postsecondary teachers, engineering
		Other engineer	083 Agricultural engineers
			084 Bioengineers or biomedical engineers
			090 Environmental engineers
			092 Marine engineers and naval architects
			093 Materials and metallurgical engineers
			095 Mining and geological engineers
			096 Nuclear engineers
			097 Petroleum engineers
			098 Sales engineers
			099 Other engineers
Science and engineering-related occupations	Science and engineering-related occupations	Health-related occupation, except postsecondary teacher	111 Diagnosing and treating practitioners 112 Registered nurses, pharmacists, dieticians, therapists, and physician assistants 113 Health technologists and technicians 114 Other health occupations
		Postsecondary teachers, health and related sciences	287 Postsecondary teachers, health and related sciences
		S\&E manager	142 Computer and information systems managers 143 Engineering managers 144 Medical and health services managers 145 Natural sciences managers
		S\&E precollege teacher	253 Teachers, secondary-computer, math, or sciences 254 Teachers, secondary-social sciences
		S\&E technician/technologist	026 Technologists and technicians, biological and life sciences
			052 Computer programmers, business, scientific, and process control
			100 Electrical, electronic, industrial, and mechanical technicians
			101 Drafting occupations, including computer drafting 102 Surveying and mapping technicians
			103 Other engineers, technologists, and technicians
			104 Surveyors, cartographers, and photogrammetrists 175 Technologists and technicians, mathematical sciences
		Other S\&E-related occupation	081 Architects 171 Actuaries
Non-science and engineering occupations	Non-science and engineering occupations	Arts/humanities-related occupation	233 Historians 010 Writers, editors, public relations specialists, artists, entertainers, and broadcasters
		Management-related occupation	151 Accountants, auditors, and other financial specialists 152 Personnel, training, and labor relations specialists 153 Other management-related occupations
		Non-S\&E manager	141 Top-level managers, executives, and administrators
			146 Education administrators 147 Other mid-level managers
		Non-S\&E postsecondary teacher	272 Postsecondary teachers, art, drama, and music

TABLE B-2. Crosswalk of occupations used in the SDR data tables

Science and engineering classification	Major occupational category	Minor occupational category	Detailed occupational category
Non-science and engineering occupations, continued	Non-science and engineering occupations, continued	Non-S\&E postsecondary teacher, continued	274 Postsecondary teachers, business, commerce and marketing 279 Postsecondary teachers, education 281 Postsecondary teachers, English 282 Postsecondary teachers, foreign language 283 Postsecondary teachers, history 288 Postsecondary teachers, physical education 299 Postsecondary teachers, other non-science and engineering
		Non-S\&E precollege/other teacher	251 Teachers, pre-kindergarten and kindergarten 252 Teachers, elementary school 255 Teachers, secondary-other subjects 256 Teachers, special education-primary and secondary 257 Teachers, other precollegiate area 300 Other teachers and instructors
		Sales/marketing occupation	200 Insurance, securities, real estate, and business services 201 Sales occupations, commodities, except retail 202 Sales occupations, retail 203 Other marketing and sales occupations
		Social service-related occupation	040 Clergy and other religious workers 070 Counselors, educational, vocational, mental health, and substance abuse 240 Social workers
		Other non-S\&E occupation	031 Accounting clerks, and bookkeepers 032 Secretaries, receptionists, and typists 033 Other administrative 110 Farmers, foresters, and fishermen 120 Lawyers and judges 130 Librarians, archivists, and curators 221 Food preparation and service 222 Protective services 223 Other service occupations, except health 401 Construction trades, miners, and well-drillers 402 Installation, maintenance, and repair occupations 403 Precision/production occupations 405 Transportation and material moving occupations 500 Other occupations

S\&E = science and engineering; SDR = Survey of Doctorate Recipients.
SOURCE: National Science Foundation/Division of Science Resources Statistics, Survey of Doctorate Recipients: 2006.

Appendix C. Survey Questionnaire

- 2006 Survey Doctorate Recipients

Survey of Doctorate Recipients

Conducted by
the National Opinion Research Center at the University of Chicago for:

National Science Foundation

This information is solicited under the authority of the National Science Foundation Act of 1950, as amended, and the Confidential Information Protection and Statistical Efficiency Act of 2002. The information you provide will be used for statistical purposes only. Your responses will be kept confidential. Your response is voluntary and failure to provide some or all of the requested information will not in any way adversely affect you. The average time to complete this survey is about 25 minutes. Please send any comments on the time required for this survey to National Science Foundation, 4201 Wilson Blvd., Suite 295, Arlington, VA 22230, Attn: NSF Reports Clearance Officer.

Please make any name/address changes below:

First Name	M.I.
Last Name	
Number and Street	
City/Town	
State	ZIP Code
$\mathrm{RC} \square$ Edit \square	ER \square Adj \square

Part A - Employment Situation

A1. Were you working for pay or profit during the week of April 1, 2006?

Working includes being self-employed, on a postdoctoral appointment, or on any type of paid or unpaid leave, including vacation.

Use an X to mark your answer.Yes \rightarrow Go to page 2, question A8
$\square{ }^{2}$ \square No

A2. (If No) Did you look for work during the four weeks preceding April 1, 2006? This would be between March $4^{\text {th }}$ and April $1^{\text {st }}$.Yes
$2 \square$ No

A3. What were your reasons for not working during the week of April 1, 2006?

Mark Yes or No for each item.

1 Retired

2 On layoff from a job. \qquad $1 \square$ $2 \square$

3 Student. $\qquad$$2 \square$
4 Family responsibilities \qquad $1 \square$ $2 \square$
5 Chronic illness or permanent disability \qquad
6 Suitable job not available \qquad $1 \square$
7 Did not need or want to work \qquad .\square ${ }_{2} \square$
8 Other-Specifyz \qquad .. .\square

A4. Prior to the week of April 1, 2006, when did you last work for pay or profit?
$0 \square \leftarrow$ Mark this box if you never worked for pay or profit and then go to page 9, question D1

A5. What was the title of the last job you held prior to the week of April 1, 2006?

Example: Physics professor

A6. What kind of work were you doing on this last job - that is, what were your duties and responsibilities on your last job? Please be as specific as possible, including any area of specialization.

Example: Taught physics and conducted research. Specialized in high energy physics.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A7. Using the JOB CATEGORY list on pages 13-14, choose the code that best describes the last job you held prior to the week of April 1, 2006.

Principal Employer

A8. Who was your principal employer during the week of April 1, 2006?
If you had more than one job, report the one for which you worked the most hours that week.

If your employer had more than one location, report the location that employed you.

If you worked for a contracting or consulting company, report the name of that company, not the client organization.

Employer Name

Department/Division

City/Town

State

ZIP Code

A9. What was that employer's main business or industry; that is, what did that employer make or do?

If your principal employer had more than one type of business, report the type of business primarily performed at the location where you worked.

Example: Production of microprocessor chips EMPLOYER'S MAIN BUSINESS

A10. Counting all locations where this employer operates, how many people work for your principal employer? Your best estimate is fine.
Mark one answer.10 or fewer employees11-24 employees
${ }_{3} \square$ 25-99 employees
$4 \square$ 100-499 employees
${ }_{5} \square$ 500-999 employees
${ }_{6} \square$ 1,000-4,999 employees
$7 \square$ 5,000-24,999 employees
${ }_{8} \square$ 25,000+employees

A11. Which one of the following best describes your principal employer during the week of April 1, 2006? Were you...

Mark one answer.

SELF-EMPLOYED or a BUSINESS OWNER

${ }_{1} \square$ In a non-incorporated business, professional practice, or farm
${ }_{2} \square$ In an incorporated business, professional practice, or farm

PRIVATE SECTOR employee
${ }_{3} \square$ In a for-profit company or organization
$4 \square$ In a non-profit organization (including tax-exempt and charitable organizations)

GOVERNMENT employee
${ }_{5} \square$ In a local government (e.g., city, county, school district)
${ }_{6} \square$ In a state government (including state colleges/ universities)
${ }_{7} \square$ In the U.S. military service, active duty or Commissioned Corps (e.g., USPHS, NOAA)
${ }_{8} \square$ In the U.S. government (e.g., civilian employee)
OTHER type of employee
${ }^{\square} \square$ Other - Specify type of employer $マ$

A12. Was your principal employer an educational institution?
$1 \square$ Yes
${ }_{2} \square$ No \rightarrow Go to page 3, question A17
A13. (If Yes) Was the educational institution where you worked a...

Mark one answer.
$\left.\square \begin{array}{l}\text { Preschool, elementary, middle, } \\ \text { or secondary school or system }\end{array}\right\} \rightarrow \begin{gathered}\text { page 3, } \\ \text { question }\end{gathered}$
$2 \square$ Two-year college, community A17 college, or technical institute
${ }_{3} \square$ Four-year college or university, other than a medical school
$4 \square$ Medical school (including university-affiliated hospital or medical center)
${ }_{5} \square$ University-affiliated research institute
${ }_{6} \square$ Other - Specify Z

A14. During the week of April 1, 2006, what type of academic position(s) did you hold at this institution?

Mark Yes or No for each item.

1 President, Provost or Chancellor (any level) \qquad
2 Dean (any level), department head or chair \qquad \square
3 Research faculty, scientist, associate or fellow \qquad $1 \square$
4 Teaching faculty \qquad $\square 2 \square$
5 Adjunct faculty \qquad $1 \square 2$
6 Postdoc (e.g., postdoctoral fellow or associate) \qquad $\square \square$
7 Research assistant \qquad $1 \square \quad 2$
8 Teaching assistant \qquad $1 \square 2$
9 Other position - Specify Z \qquad \square
\qquad

A15. What was your faculty rank?
Mark one answer.Not applicable: no ranks designated at this institution
${ }_{2} \square$ Not applicable: no ranks designated for my position
Professor
${ }_{4} \square$ Associate Professor
${ }_{5} \square$ Assistant Professor
${ }_{6} \square$ Instructor
$7 \square$ Lecturer
${ }_{8} \square$ Other - Specify Z

A16. What was your tenure status?
Mark one answer.
${ }_{1} \square$ Not applicable: no tenure system at this institutionNot applicable: no tenure system for my positionTenuredOn tenure track but not tenured
${ }_{5} \square$ Not on tenure track

Principal Job

A17. What was the title of the principal job you held during the week of April 1, 2006?
Example: Physics professor

A18. What kind of work were you doing on this job that is, what were your duties and responsibilities on your principal job? Please be as specific as possible, including any area of specialization.
Example: Taught physics and conducted research. Specialized in high energy physics.

A19. Using the JOB CATEGORY list on pages 13-14, choose the code that best describes the principal job you held during the week of April 1, 2006.

CODE

A20. Was this job a "postdoc?"
A "postdoc" is a temporary position awarded in academe, industry, a non-profit organization or government primarily for gaining additional education and training in research.YesNo
A21. During what month and year did you start this job (that is, the principal job you held during the week of April 1, 2006)?

A22. To what extent was your work on your principal job related to your first U.S. doctoral degree? Was it...

Mark one answer.

Closely related
${ }_{2} \square$ Somewhat related Go to question A25

Not related

A23. (If Not related) Did these factors influence your decision to work in an area outside the field of your first U.S. doctoral degree?

Mark Yes or No for each item.

1 Pay, promotion opportunities

2 Working conditions (e.g., hours, equipment, working environment). \qquad
3 Job location \qquad
4 Change in career or professional interests \qquad $1 \square$ \square
5 Family-related reasons (e.g., children, spouse's job moved) \qquad
6 Job in doctoral degree field not available
7 Some other reason - Specify Z \qquad

A24. Which two factors in question A23 were your most important reasons for working in an area outside the field of your first U.S. doctoral degree?

Enter number of appropriate reason from question A23 above.

1 ___ Most important reason

2 \qquad Second most important reason (Enter "0" if no second reason)

A25. The next question is about your work activities on your principal job. Which of the following work activities occupied at least 10 percent of your time during a typical work week on this job?
Mark Yes or No for each item.

1 Accounting, finance, contracts

2 Basic research - study directed toward gaining scientific knowledge primarily for its own sake \qquad $1 \square$ $2 \square$

3 Applied research - study directed toward gaining scientific knowledge to meet a recognized need. \qquad ${ }_{1} \square \quad{ }_{2} \square$
4 Development - using knowledge gained from research for the production of materials, devices \qquad $1 \square$ ${ }_{2} \square$

5 Design of equipment, processes, structures, models \qquad ${ }_{1} \square \quad 2 \square$
6 Computer programming, systems or applications development. \qquad ${ }_{1} \square \quad 2 \square$
7 Human resources - including recruiting, personnel development, training \qquad $1 \square \quad \square$

8 Managing or supervising people or projects \qquad ... 1 $2 \square$

9 Production, operations, maintenance (e.g., chip production, operating lab equipment) \qquad $1 \square \quad \square$

10 Professional services (e.g., health care, counseling, financial services, legal services). \qquad ${ }_{1} \square \quad 2 \square$

11 Sales, purchasing, marketing, customer service, public relations \qquad $1 \square \quad \square$

12 Quality or productivity management. \qquad 1 $\square \quad \square$

13 Teaching
14 Other-Specifyz. \qquad
\qquad
A26. On which two activities in question A25 did you work the most hours during a typical week on this job?

Enter number of appropriate activity from question A25 above.

1 Activity most hours

2
Activity second most hours
(Enter "0" if no second most)

A27. In performing the principal job you held during the week of April 1, 2006, did you...

Mark Yes or No for each item.

1 Work with an immediate work group or team? \qquad

2 Work with others in the same organization (company, university, agency, etc.), but not the same group or team? \qquad ${ }_{1} \square$ $2 \square$
3 Work with individuals in other organizations in the U.S.? \qquad $1 \square$ $2 \square$

4 Work with individuals located in other countries? \qquad .\square

If Yes to Item 4, go to question A28.
If No to Item 4, go to question A30.

A28. (If Yes to Item 4 above) Did your work with individuals located in other countries involve.

Mark Yes or No for each item.

1 Sharing data or information? \qquad
2 Sharing materials, equipment, or facilities? \qquad $1 \square$
3 Preparing a joint publication? \qquad $1 \square$
4 Jointly developing or designing a product, process, or program?. \qquad $1 \square$

5 Collaborating on a research project? \qquad . 1
6 Other type of work? - Specify Z \qquad . $2 \square$

A29. In your work with individuals located in other countries, did you...

Mark Yes or No for each item.

1 Communicate by telephone or e-mail to conduct the work? \qquad

2 Use web-based or virtual technology to conduct the work? \qquad $1 \square$
3 Travel to a foreign country for collaborative activities? \qquad .\square

4 Work with foreign collaborator(s) who traveled to the U.S. to meet with you? \qquad .

A30. Did you supervise the work of others as part of the principal job you held during the week of April 1, 2006?

Mark "Yes" if you recommended or initiated personnel actions such as hiring, firing, evaluating, or promoting others.

Teachers should not count students.
${ }_{1}$ Yes
${ }_{2} \square$ No \rightarrow Go to question A32

A31. (If Yes) How many people did you typically.
Number
Supervised

1 Supervise directly?
(If none, enter " 0 ")
2 Supervise indirectly through subordinate supervisors?
(If none, enter " 0 ")

A32. How would you rate your overall satisfaction with the principal job you held during the week of April 1, 2006?

Mark one answer.Very satisfiedSomewhat satisfied
${ }_{3} \square$ Somewhat dissatisfied
${ }_{4} \square$ Very dissatisfied

A33. As of the week of April 1, 2006, what was your basic annual salary on your principal job, before deductions?

Do not include bonuses, overtime or additional compensation for summertime teaching or research.
If you are not salaried, please estimate your earned income, excluding business expenses.

ANNUAL SALARY OR EARNED INCOME

A34. Was this salary based on a 52-week year, or less than that?

Include paid vacation and sick leave.
$1 \square$
52-week yearLess than 52 weeks

NUMBER OF WEEKS PER YEAR

A35. During a typical week on your principal job, how many hours did you work?

NUMBER OF HOURS
WORKED PER WEEK
If fewer than 35 hours, go to question A36.
If $\mathbf{3 5}$ or more hours, go to page 7 , question A38.

A36. (If fewer than 35 hours) Did you want to work 35 or more hours per week on your principal job?
\qquad YesNo

A37. For which of the following reasons did you usually work fewer than 35 hours per week on the principal job you held during the week of April 1, 2006?

Mark Yes or No for each item.

1 Previously retired or semi-retired

2 Student \qquad $1 \square$ $2 \square$
3 Family responsibilities \qquad $.1 \square$ ${ }_{2} \square$
4 Chronic illness or permanent disability. \qquad $1 \square$ ${ }_{2} \square$
5 Did not need or want to work more hours. \qquad ${ }_{1} \square$ $2 \square$
6 Other - Specify Z. \qquad $.1 \square$ ${ }_{2} \square$

A38. Since completing your first doctoral degree, how many "postdocs," if any, have you held? Please include any postdocs you held through April 1, 2006.

A "postdoc" is a temporary position awarded in academe, industry, a non-profit organization or government primarily for gaining additional education and training in research.
$0 \square \leftarrow$ Mark this box if None and go to page 8, question A41

NUMBER OF POSTDOCS \qquad

A39. Please provide the following information for each postdoc reported in A38.

CURRENT OR MOST RECENT POSTDOC
a. Date postdoc started and ended (or date you left)

b. What was your primary reason for taking this postdoc?

Mark one answer.
${ }_{1} \square$ Additional training in PhD field
${ }_{2} \square$ Training in an area outside of PhD field
${ }_{3} \square$ Work with a specific person or place
$4 \square$
Other employment not available
Postdoc generally expected for a career in this field
${ }_{6} \square$ Some other reason - Specify Z
c. Which sector best describes where you worked for this postdoc?

Mark one answer.
${ }_{1} \square$ Educational institution
For-profit or non-profit company/ organization
${ }_{3} \square$ Government (any level)
${ }_{4} \square$
Other - Specify Z
d. For this postdoc position, did your employer provide...

Mark Yes or No for each item.

a. Date postdoc started and ended (or date you left)

b. What was your primary reason for taking this postdoc?

Mark one answer.Additional training in PhD fieldTraining in an area outside of PhD fieldWork with a specific person or placeOther employment not availablePostdoc generally expected for a career in this fieldSome other reason - Specify Z
c. Which sector best describes where you worked for this postdoc?

Mark one answer.Educational institutionFor-profit or non-profit company/ organization
${ }_{3} \square$ Government (any level)
${ }_{4} \square$ Other - Specify Z
d. For this postdoc position, did your employer provide...

Mark Yes or No for each item.

THIRD MOST RECENT POSTDOC

a. Date postdoc started and ended (or date you left)

b. What was your primary reason for taking this postdoc?

Mark one answer.

Additional training in PhD field
Training in an area outside of PhD field
${ }_{3} \square$ Work with a specific person or placeOther employment not availablePostdoc generally expected for a career in this fieldSome other reason - Specify Z
c. Which sector best describes where you worked for this postdoc?

Mark one answer.Educational institutionFor-profit or non-profit company/ organization
${ }_{3} \square$ Government (any level)
${ }_{4} \square$
Other - Specify Z
d. For this postdoc position, did your employer provide...

Mark Yes or No for each item.

A40. To what extent did your most recent (or current) postdoctoral appointment...

Mark one answer for each item.

1 Increase your subject matter knowledge or expertise? \qquad

2 Improve specific research skills or techniques? \qquad ${ }_{1} \square$

3 Increase contacts with colleagues in your field? \qquad ${ }_{1} \square$
4 Provide opportunities to use specialized equipment? \qquad ${ }_{1} \square$

5 Improve your problem-solving skills?

6 Enhance your career opportunities? \qquad $1 \square$
7 Help in other areas? - Specify Z \qquad ${ }_{1} \square$

A41. Thinking back now to 2005, was any of your work during 2005 supported by contracts or grants from the U.S. government?

FEDERAL EMPLOYEES: Please answer "No."
Mark one answer.

Go to

- \square Did not work in $2005 \rightarrow$ question B1

A42. Counting all jobs held in 2005, what was your total earned income for 2005, before deductions?

Include all wages, salaries, bonuses, overtime, commissions, consulting fees, net income from businesses, summertime teaching or research, or other work associated with scholarships.

TOTAL 2005 EARNED INCOME

Part B - Past Employment

B1. Were you working for pay or profit during both of these time periods - the week of October 1, 2003 and the week of April 1, 2006?
${ }_{1} \square$ Yes
${ }_{2} \square$ No \rightarrow Go to page 9, question C1

B2. (If Yes) During these two time periods - the week of October 1, 2003, and the week of April 1, 2006 - were you working for...

Mark one answer.$\left.\begin{array}{l}\text { Same employer and in } \\ \text { same type of job }\end{array}\right\} \begin{aligned} & \text { Go to page 9, } \\ & \text { question C1 }\end{aligned}$

$\left\{\begin{array}{l}{ }_{2} \square \\ { }_{3} \square \\ { }_{4} \square\end{array}\right.$Same employer but in different type of job Different employer but in same type of job ${ }_{4} \square$ Different employer and in different type of job

B3. (If Different) Why did you change your employer or your job?

Mark Yes or No for each item.

1 Pay, promotion opportunities

2 Working conditions (e.g., hours, equipment, working environment). \qquad $1 \square \quad \square$
3 Job location
4 Change in career or professional interests \qquad 1 $\square \quad 2 \square$

5 Family-related reasons (e.g., children, spouse's job moved) \qquad
6 School-related reasons (e.g., returned to school, completed a degree) \qquad $1 \square \quad \square$
7 Laid off or job terminated (includes company closings, mergers, buyouts, grant or contract ended) \qquad $1 \square$ ${ }_{2} \square$
8 Retired ... \square $\square \square$
9 Some other reason-Specify $Z \ldots1 \square \quad 2 \square$

Part C - Other Work-Related Experiences

C1. During the past $\mathbf{1 2}$ months, did you take any workrelated training, such as workshops or seminars?

Include conferences or professional meetings only if you attended a training session at the conference or meeting.

Do not include college coursework for which you were enrolled in a degree program.Yes
$2 \square$
No \rightarrow Go to question D1 on this page

C2. (If Yes) For which of the following reasons did you take training during the past 12 months?

Mark Yes or No for each item.

1 To improve skills or knowledge in your current occupational field \qquad $1 \square$ $2 \square$

2 To increase opportunities for promotion or advancement in your current occupational field \qquad ${ }_{1} \square$ $2 \square$

3 For licensure or certification in your current occupational field \qquad $1 \square$ ${ }_{2} \square$

4 To facilitate a change to a different occupational field. \qquad $1 \square$
5 Required or expected by employer \qquad $1 \square$ $2 \square$

6 For leisure or personal interest \qquad $1 \square$

7 Other - Specifyマ \qquad $1 \square$
\qquad

C3. What was your most important reason from question C 2 for taking training?

Enter number of appropriate reason from question C2 above.

MOST IMPORTANT REASON

Part D - Recent Educational Experiences

D1. Between October 2003 and March 2006, did you complete another degree, such as a master's or another doctorate?

Yes
${ }_{2} \square$ No \rightarrow Go to page 10, question E1

D2. (If Yes) What type of degree did you earn?
If you completed more than one degree, mark the level for the highest degree awarded.

Mark one answer.
$1 \square$ Bachelor's degree (e.g., BS, BA, AB)
${ }_{2} \square$ Master's degree (e.g., MS, MA, MBA)
${ }_{3} \square$ Doctorate (e.g., PhD, DSc, EdD, etc.)
$4 \square$ Other professional degree (e.g., JD, LLB, MD, DDS, DVM, etc.) - Specify Z
${ }_{5} \square$ Other - Specify Z
\qquad

D3. What was the primary field of study for this degree?

PRIMARY FIELD OF STUDY

D4. In what month and year was this degree awarded?

D5. From which academic institution did you receive this degree?

College or University Name

Department

City/Town

State/Foreign Country

D6. For which of the following reasons did you obtain this degree?

Mark Yes or No for each item.

1 To gain further education before beginning a career \qquad $\begin{array}{cc}\text { Yes } & \text { No } \\ \downarrow & \downarrow \\ \\ \square & 2 \square\end{array}$
2 To prepare for graduate school or further education \qquad $1 \square$$2 \square$

3 To change your academic or occupational field \qquad .\square $2 \square$
4 To gain further skills or knowledge in your academic or occupational field \qquad $1 \square$ $2 \square$

5 For licensure or certification. \qquad $1 \square$ \square

6 To increase opportunities for promotion, advancement or higher salary \qquad $1 \square$ [
7 Required or expected by employer \qquad $1 \square$ $\square \quad 2 \square$

8 For leisure or personal interest \qquad $1 \square$ $\square \quad \square$
9 Other-Specifyz \qquad $1 \square$

Part E - Demographic Information

E1. On April 1, 2006, were you...
Mark one answer.

Married
\square Living in a marriage-like relationship
${ }_{3} \square$ Widowed
${ }_{4} \square$ SeparatedDivorced
$\longrightarrow \quad$ Go to
Never married

E2. (If Married or Living in a marriage-like relationship) During the week of April 1, 2006, was your spouse or partner working?Yes, full-time
${ }_{2} \square$ Yes, part-time
${ }_{3} \square$ No

E3. As of the week of April 1, 2006, did you have any children living with you as part of your family?

Only count children who lived with you at least 50 percent of the time.Yes
$2 \square$ No \rightarrow Go to page 11, question E5

E4. (If Yes) How many of these children living with you as part of your family were...
If no children in a category, enter "0."
Number of Children

1 Under age 2 \qquad
\qquad

2 Aged 2-5. \qquad
\qquad

3 Aged 6-11 \qquad
\qquad

4 Aged 12-18 \qquad
\qquad

5 Aged 19 or older \qquad

E5. On April 1, 2006, were you living in the United States, Puerto Rico, or another U.S. territory, or were you living in another country?United States, Puerto Rico, or another U.S. territoryAnother country

E6. On April 1, 2006, were you a...U.S. citizen
${ }_{2} \square$
Non-U.S. citizen \rightarrow Go to question E8

E7. (If U.S. citizen) Were you a U.S. citizen...
Mark one answer.Born in the United States, Puerto Rico, or another U.S. territory

Go to
Born abroad of American parent(s) question E10By naturalization \qquad

E8. (If Non-U.S. citizen) Were you a non-U.S. citizen...With a Permanent
U.S. Resident Visa (Green Card)
${ }_{2} \square$ With a Temporary
U.S. Resident Visa

E9. Of which foreign country are you a citizen?

FOREIGN COUNTRY

E10. What is your birthdate?

E11. The next several questions are designed to help us better understand the career paths of individuals with different physical abilities.

E12. What is the USUAL degree of difficulty you have with...
Mark one answer for each item.

1 SEEING words or letters in ordinary newsprint (with glasses/contact lenses, if you usually wear them)
None

th
\ldots
$\ldots \ldots \ldots \ldots ~$
\square

Slight	Moderate	Severe	Unable to Do
\downarrow	\downarrow	\downarrow	\downarrow
$2 \square$	${ }_{3} \square$	$4 \square$	${ }_{5} \square$
	\square	${ }_{3} \square$	$4 \square$
${ }_{2} \square$	${ }_{5} \square$		
$2 \square$	${ }_{3} \square$	$4 \square$	${ }_{5} \square$
$2 \square$	${ }_{3} \square$	$4 \square$	$5 \square$

E13. $\square \square \longleftarrow$ Mark this box if you answered "None" to all the activities in question E12, and go to question E15.

E14. What is the earliest age at which you first began experiencing any difficulties in any of these areas?

AGE \qquad OR \qquad \leftarrow SINCE BIRTH

E15. In case we need to clarify some of the information you have provided, please list phone numbers and an e-mail address where you can be reached.

E-mail Address
@
E16. Because we are interested in how education and employment change over time, we may be recontacting you in 2008. To help us contact you, please provide the name and contact information for two people who are likely to know where you can be reached. Do not include someone who lives in your household.

As with all the information provided in this questionnaire, complete confidentiality will be provided. These people will only be contacted if we have difficulty contacting you in 2008.

First Name	MI	Last Name

First Name	MI	Last Name

Number and Street

City/Town	State	ZIP Code

City/Town	State	ZIP Code

Country (if outside of U.S.)

E17. PLEASE TURN TO THE BACK COVER FOR THE LAST QUESTION (E18).

JOB CATEGORY

If you cannot find the code that best describes your job, use the "OTHER" code under the most appropriate broad category. If none of the codes fit your job, use Code 500.

- Biological/Life Scientists	$\begin{aligned} & 021 \\ & 022 \\ & 023 \\ & 024 \end{aligned}$	Agricultural and food scientists Biochemists and biophysicists Biological scientists (e.g., botanists, ecologists, zoologists) Forestry and conservation scientists		Medical scientists (excluding practitioners) Technologists and technicians in the biological/life sciences OTHER biological and life scientists
- Clerical/Administrative Support Occupations	$\begin{aligned} & 031 \\ & 032 \end{aligned}$	Accounting clerks and bookkeepers Secretaries, receptionists, typists	033	OTHER administrative (e.g., record clerks, telephone operators)
- Clergy/Other Religious Workers	040	Clergy and other religious workers		
- Computer Occupations Also consider 173 Operations research analysts, inc/uding modeling	$\begin{aligned} & 051 \\ & 052 \\ & \\ & 053 \\ & 054 \end{aligned}$	Computer engineers - Also consider 087 Computer engineers - hardware and 088 Computer engineers - software Computer \& information scientists, research Computer programmers (business, scientific, process control) Computer support specialists Computer system analysts	055 056 057 058	Database administrators Network and computer systems administrators Network systems and data communications analysts OTHER computer and information science occupations
- Consultants	Find the category on page 13 or 14 that comes closest to your field of consulting and select the code			
- Counselors	070	Counselors (Educational, vocational, mental health and substance abuse) Also consider 236 Psychologists, including clinical		
- Engineers/Architects Also consider 100 to 104 under Engineering Technologists, Technicians and Surveyors	$\begin{aligned} & \hline 081 \\ & 082 \\ & 083 \\ & 084 \\ & 085 \\ & 086 \\ & 087 \\ & 088 \\ & 089 \end{aligned}$	Architects Aeronautical/aerospace/astronautical engineers Agricultural engineers Bioengineers or biomedical engineers Chemical engineers Civil, including architectural/sanitary engineers Computer engineers - hardware Computer engineers - software Electrical and electronics engineers	090 091 092 093 094 095 096 097 098 099	Environmental engineers Industrial engineers Marine engineers and naval architects Materials and metallurgical engineers Mechanical engineers Mining and geological engineers Nuclear engineers Petroleum engineers Sales engineers OTHER engineers
- Engineering Technologists/ Technicians/Surveyors	100 101 102	Electrical, electronic, industrial, and mechanical technicians Drafting occupations, including computer drafting Surveying and mapping technicians	103 104	OTHER engineering technologists and technicians Surveyors, cartographers, photogrammetrists
- Farmers/Foresters/Fishermen	110	Farmers, foresters and fishermen		
- Health Occupations	111 112 236	Diagnosing/treating practitioners (e.g., dentists, optometrists, physicians, psychiatrists, podiatrists, surgeons, veterinarians) Registered nurses, pharmacists, dieticians, therapists, physician assistants Psychologists, including clinical - Also consider 070 Counselors	114	Health technologists and technicians (e.g., dental hygienists, health record technologists/technicians, licensed practical nurses, medical or laboratory technicians, radiological technicians) OTHER health occupations
- Lawyers/Judges	120	Lawyers, judges		
- Librarians/Archivists/Curators	130	Librarians, archivists, curators		
- Managers and Supervisors, First-Line	Find the category on page 13 or 14 that best describes the occupation of the people you manage and select the code			
- Managers, Top-level Executives/Administrators	141	Top-level managers, executives, administrators (e.g., CEO/COO/CFO, president, district manager, general manager, legislator, chancellor, provost)		
- Managers, Other People who manage other managers	142 143 144 145 146 147	Computer and information systems managers Engineering managers Medical and health services managers Natural sciences managers Education administrators (e.g., registrar, dean, OTHER mid-level managers		

JOB CATEGORY (Continued)

- Management-Related	151	Accountants, auditors, and other financial Sccupations	153	OTHER management related occupations
Also consider 141 to 147 under	152	Personnel, training, and labor relations Managers, Other		specialists

E18. How would you like to complete future rounds of this survey?
Mark one answer.
$1 \square$ A questionnaire sent in the mail
$2 \square$ A questionnaire that you could fill out on the World Wide Web
${ }_{3} \square$ A telephone interview
${ }_{4} \square$ No preference

THANK YOU FOR COMPLETING THE QUESTIONNAIRE.

Please return the completed form in the postage-paid envelope provided.
If you cannot find the envelope or want another, call 1-800-685-1663, or you may request an envelope at the NORC 2006 Survey of Doctorate Recipients Website. Follow the "Request an Envelope" link at www.norc.uchicago.edu/sdr.

Our mailing address is:
2006 Survey of Doctorate Recipients
c/o National Opinion Research Center
1 North State, $16^{\text {th }}$ Floor
Chicago, IL 60602-3305

- Results of the Survey of Doctorate Recipients can be found on the National Science Foundation's Website at http://www.nsf.gov/statistics/doctoratework.
- You are not required to respond to any information collection unless it displays a valid approval number from the Office of Management and Budget. The approval number for this survey is 3145-0020.

COMMENTS ABOUT THIS SURVEY:

Suggested Citation, Acknowledgments

National Science Foundation, Division of Science Resources Statistics. 2009. Characteristics of Doctoral Scientists and Engineers in the United States: 2006. Detailed Statistical Tables NSF 09-317. Arlington, VA. Available at http://www.nsf.gov/statistics/nsf09317/.

National Opinion Research Corporation (NORC) of the University of Chicago, under NSF contract number SRS-02-08765, prepared the tables and report copy under the direction of Nirmala Kannankutty and Steven Proudfoot, Human Resources Statistics Program, Division of Science Resources Statistics, National Science Foundation. NORC staff members who worked on this report were Karen Grigorian, Lance Selfa, Shana Brown, Deborah Harper, Scott Sederstrom and Ron Broach.

Division of Science Resources Statistics

Lynda T. Carlson	Mary J. Frase
Division Director	Deputy Director

Stephen Cohen
Nancy L. Leach
Chief Statistician
Program Director, Human Resources Statistics

